
Technische Universität München WS 2013/14
Institut für Informatik 10. 12. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 8

Exercise 8.1 Independence analysis

In this exercise you first prove that the execution of a command only depends on its used
(i.e., read or assigned) variables. Then you use this to prove commutativity of sequential
composition

term “s = t on X”

First show that arithmetic and boolean expressions only depend on the variables occuring
in them

lemma [simp]: “s1 = s2 on X =⇒ vars a ⊆ X =⇒ aval a s1 = aval a s2”

lemma [simp]: “s1 = s2 on X =⇒ vars b ⊆ X =⇒ bval b s1 = bval b s2”

Next, show that executing a command does not invent new variables

lemma vars subsetD [dest]: “ (c, s) → (c ′, s ′) =⇒ vars c ′ ⊆ vars c”

And that the effect of a command is confined to its variables

lemma small step confinement : “ (c, s) → (c ′, s ′) =⇒ s = s ′ on UNIV − vars c”
lemma small steps confinement : “ (c, s) →∗ (c ′, s ′) =⇒ s = s ′ on UNIV − vars c”

Hint: These proofs should go through (mostly) automatically by induction.

Now, we are ready to show that commands only depend on the variables they use:

lemma small step indep:
“ (c, s) → (c ′, s ′) =⇒ s = t on X =⇒ vars c ⊆ X =⇒ ∃ t ′. (c, t) → (c ′, t ′) ∧ s ′ = t ′ on X”

lemma small steps indep: “ [[(c, s) →∗ (c ′, s ′); s = t on X ; vars c ⊆ X]]
=⇒ ∃ t ′. (c, t) →∗ (c ′, t ′) ∧ s ′ = t ′ on X”

Two lemmas that may prove useful for the next proof.

lemma small steps SeqE : “ (c1 ;; c2 , s) →∗ (SKIP , s ′)
=⇒ ∃ t . (c1 , s) →∗ (SKIP , t) ∧ (c2 , t) →∗ (SKIP , s ′)”
by (induction “c1 ;; c2” s SKIP s ′ arbitrary : c1 c2 rule: star induct)

(blast intro: star .step)

1

lemma small steps SeqI : “ [[(c1 , s) →∗ (SKIP , s ′); (c2 , s ′) →∗ (SKIP , t)]]
=⇒ (c1 ;; c2 , s) →∗ (SKIP , t)”
by (induction c1 s SKIP s ′ rule: star induct)

(auto intro: star .step)

As we operate on the small-step semantics we also need our own version of command
equivalence. Two commands are equivalent iff a terminating run of one command implies
a terminating run of the other command. And, of course the terminal state needs to be
equal when started in the same state.

definition equiv com :: “com ⇒ com ⇒ bool” (infix “∼s” 50) where
“c1 ∼s c2 ←→ (∀ s t . (c1 , s) →∗ (SKIP , t) ←→ (c2 , s) →∗ (SKIP , t))”

Show that we defined an equivalence relation

lemma ec refl [simp]: “equiv com c c”
lemma ec sym: “equiv com c1 c2 ←→ equiv com c2 c1 ”
lemma ec trans[trans]: “equiv com c1 c2 =⇒ equiv com c2 c3 =⇒ equiv com c1 c3”

Note that our small-step equivalence matches the big-step equivalence

lemma “c1∼sc2 ←→ c1∼c2” unfolding equiv com def by (metis big iff small)

Finally, show that commands that share no common variables can be re-ordered

theorem Seq equiv Seq reorder :
assumes vars: “vars c1 ∩ vars c2 = {}”
shows “ (c1 ;; c2) ∼s (c2 ;; c1)”

proof −
{

As the statement is symmetric, we can take a shortcut by only proving one direction:

fix c1 c2 s t
assume Seq : “ (c1 ;; c2 , s) →∗ (SKIP , t)” and vars: “vars c1 ∩ vars c2 = {}”
have “ (c2 ;; c1 , s) →∗ (SKIP , t)”
} with vars show ?thesis unfolding equiv com def by (metis Int commute)

qed

2

Homework 8.1 Idempotence of Dead Varibale Elimination

Submission until Tuesday, December 17, 2013, 10:00am.

Dead variable elimination (bury) is not idempotent: multiple passes may reduce a com-
mand further and further. Give an example where bury (bury c X) X 6= bury c X. Hint:
a sequence of two assignments.

Now define the textually identical function bury in the context of true liveness analysis
(theory Live True).

fun bury :: “com ⇒ vname set ⇒ com” where
“bury SKIP X = SKIP” |
“bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)” |
“bury (c1;; c2) X = (bury c1 (L c2 X);; bury c2 X)” |
“bury (IF b THEN c1 ELSE c2) X = IF b THEN bury c1 X ELSE bury c2 X” |
“bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)”

The aim of this homework is to prove that this version of bury is idempotent. This will
involve reasoning about lfp. In particular we will need that lfp is the least pre-fixpoint.
This is expressed by two lemmas from the library:

lfp unfold : mono ?f =⇒ lfp ?f = ?f (lfp ?f)
lfp lowerbound : ?f ?A ≤ ?A =⇒ lfp ?f ≤ ?A

Prove the following lemma for showing that two fixpoints are the same, where mono def :
mono ?f = (∀ x y . x ≤ y −→ ?f x ≤ ?f y).

lemma lfp eq : “ [[mono f ; mono g ; lfp f ⊆ U ; lfp g ⊆ U ;
!!X . X ⊆ U =⇒ f X = g X]] =⇒ lfp f = lfp g”

It says that if we have an upper bound U for the lfp of both f and g, and f and g behave
the same below U, then they have the same lfp.

The following two tweaks improve proof automation:

lemmas [simp] = L.simps(5)
lemmas L mono2 = L mono[unfolded mono def]

To show that bury is idempotent we need a lemma:

lemma L bury [simp]: “X ⊆ Y =⇒ L (bury c Y) X = L c X”
proof(induction c arbitrary : X Y)

The proof is straightforward except for the case WHILE b DO c. The definition of L in
this case means that we have to show an equality of two lfps. Lemma [[mono ?f ; mono
?g ; lfp ?f ⊆ ?U ; lfp ?g ⊆ ?U ;

∧
X . X ⊆ ?U =⇒ ?f X = ?g X]] =⇒ lfp ?f = lfp ?g

comes to the rescue. We recommend the upper bound lfp (λZ . vars b ∪ Y ∪ L c Z).
One of the two upper bound assumptions of lemma [[mono ?f ; mono ?g ; lfp ?f ⊆ ?U ;
lfp ?g ⊆ ?U ;

∧
X . X ⊆ ?U =⇒ ?f X = ?g X]] =⇒ lfp ?f = lfp ?g can be proved by

showing that U is a pre-fixpoint of f or g (see lemma lfp lowerbound).

Now we can prove idempotence of bury, again by induction on c, but this time even the
While case should be easy.

3

lemma bury bury : “X ⊆ Y =⇒ bury (bury c Y) X = bury c X”

Idempotence is a corollary:

corollary “bury (bury c X) X = bury c X”

Homework 8.2 Independence, in Parallel Programs

Submission until Tuesday, December 17, 2013, 10:00am. 5 bonus points.

Extend the while language with a parallel operator ‖, such that c1‖c2 executes com-
mands c1 and c2 in parallel, and define a small step semantics.

Show that, for your parallel language, you have vars c1 ∩ vars c2 = {} =⇒ (c1 || c2)
∼s (c1 ;; c2), i.e., sequential composition can be transformed to parallel execution if it
works on different variables.

To solve this exercise, use the template from the webpage, which provides a sample
solution from exercise 8.1 adapted to the parallel commands.

end

4

