Institut für Informatik

Semantics of Programming Languages

Exercise Sheet 8

Exercise 8.1 Independence analysis

In this exercise you first prove that the execution of a command only depends on its used (i.e., read or assigned) variables. Then you use this to prove commutativity of sequential composition

```
term " }s=t\mathrm{ on }X\mathrm{ "
```

First show that arithmetic and boolean expressions only depend on the variables occuring in them
lemma [simp]: "s1 $=$ s2 on $X \Longrightarrow$ vars $a \subseteq X \Longrightarrow$ aval a s1 $=$ aval a $s 2$ "
lemma [simp]:" $s 1=s 2$ on $X \Longrightarrow$ vars $b \subseteq X \Longrightarrow$ bval b s1 $=$ bval b s2"

Next, show that executing a command does not invent new variables
lemma vars_subset $D[d e s t]:$: $(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow$ vars $c^{\prime} \subseteq$ vars c "
And that the effect of a command is confined to its variables
lemma small_step_confinement: " $(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s=s^{\prime}$ on UNIV - vars c "
lemma small_steps_confinement: " $(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s=s^{\prime}$ on UNIV - vars c "
Hint: These proofs should go through (mostly) automatically by induction.
Now, we are ready to show that commands only depend on the variables they use:

```
lemma small_step_indep:
    " \((c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s=t\) on \(X \Longrightarrow\) vars \(c \subseteq X \Longrightarrow \exists t^{\prime} .(c, t) \rightarrow\left(c^{\prime}, t^{\prime}\right) \wedge s^{\prime}=t^{\prime}\) on \(X^{\prime \prime}\)
lemma small_steps_indep: " \(\llbracket(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right) ; s=t\) on \(X\); vars \(c \subseteq X \rrbracket\)
    \(\Longrightarrow \exists t^{\prime} .(c, t) \rightarrow *\left(c^{\prime}, t^{\prime}\right) \wedge s^{\prime}=t^{\prime}\) on \(X^{\prime \prime}\)
```

Two lemmas that may prove useful for the next proof.

```
lemma small_steps_SeqE: "(c1 ;; c2, s) ->* (SKIP, s')
    \Longrightarrow\existst.(c1,s) ->* (SKIP,t)^(c2,t) ->* (SKIP, s')"
    by (induction "c1 ;; c2" s SKIP s' arbitrary: c1 c2 rule: star_induct)
        (blast intro: star.step)
```

```
lemma small_steps_SeqI:"【(c1,s) \(\rightarrow *\left(S K I P, s^{\prime}\right) ;\left(c 2, s^{\prime}\right) \rightarrow *(S K I P, t) \rrbracket\)
    \(\Longrightarrow(c 1 ; ; c 2, s) \rightarrow *(S K I P, t) "\)
    by (induction c1 s SKIP s'rule: star_induct)
    (auto intro: star.step)
```

As we operate on the small-step semantics we also need our own version of command equivalence. Two commands are equivalent iff a terminating run of one command implies a terminating run of the other command. And, of course the terminal state needs to be equal when started in the same state.

```
definition equiv_com ::"com => com => bool" (infix " ~ " 50) where
    "c1 ~s c\mathcal{L}\longleftrightarrow(\forallst. (c1,s) ->* (SKIP,t)\longleftrightarrow(c2,s) ->* (SKIP,t))"
```

Show that we defined an equivalence relation

```
lemma ec_refl[simp]: "equiv_com c c"
    lemma ec_sym: "equiv_com c1 c2 \(\longleftrightarrow\) equiv_com c2 c1"
    lemma ec_trans[trans]: "equiv_com c1 c2 \(\Longrightarrow\) equiv_com c2 c3 \(\Longrightarrow\) equiv_com c1 c3"
```

Note that our small-step equivalence matches the big-step equivalence

```
lemma"c1~}\mp@subsup{~}{s}{}c2\longleftrightarrowc1~c2" unfolding equiv_com_def by (metis big_iff_small)
```

Finally, show that commands that share no common variables can be re-ordered

```
theorem Seq_equiv_Seq_reorder:
    assumes vars: "vars \(c 1 \cap\) vars \(c 2=\{ \}\) "
    shows " \((c 1 ; ; c 2) \sim_{s}(c \mathcal{2} ; ; c 1) "\)
proof -
    \{
```

As the statement is symmetric, we can take a shortcut by only proving one direction:

```
    fix c1 c2 st
```

 assume Seq: " \((c 1 ; ; c 2, s) \rightarrow *(S K I P, t) "\) and vars: "vars \(c 1 \cap\) vars \(c \mathcal{L}=\{ \}\) "
 have " \((c 2 ; ; c 1, s) \rightarrow *(S K I P, t)\) "
 \} with vars show ?thesis unfolding equiv_com_def by (metis Int_commute)
 qed

Homework 8.1 Idempotence of Dead Varibale Elimination

Submission until Tuesday, December 17, 2013, 10:00am.
Dead variable elimination (bury) is not idempotent: multiple passes may reduce a command further and further. Give an example where bury (bury c X) $X \neq$ bury c X. Hint: a sequence of two assignments.
Now define the textually identical function bury in the context of true liveness analysis (theory Live_True).
fun bury :: "com \Rightarrow vname set \Rightarrow com" where
"bury SKIP $X=$ SKIP"
"bury $(x::=a) X=($ if $x \in X$ then $x::=a$ else SKIP $)$ " \mid
"bury ($c_{1} ; ; c_{2}$) $X=\left(\right.$ bury $c_{1}\left(L c_{2} X\right) ;$ bury $\left.c_{2} X\right)$ "
"bury (IF b THEN c_{1} ELSE c_{2}) X $=$ IF b THEN bury $c_{1} X$ ELSE bury $c_{2} X$ "
"bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)"
The aim of this homework is to prove that this version of bury is idempotent. This will involve reasoning about $l f p$. In particular we will need that $l f p$ is the least pre-fixpoint. This is expressed by two lemmas from the library:

$$
\begin{array}{ll}
\text { lfp_unfold: } & \text { mono ?f } \Longrightarrow \text { lfp } ? f=\text { ?f (lfp ?f) } \\
\text { lfp_lowerbound: } & \text { ?f } ? A \leq ? A \Longrightarrow \text { lfp ?f } \leq ? A
\end{array}
$$

Prove the following lemma for showing that two fixpoints are the same, where mono_def: mono ?f $=(\forall x y . x \leq y \longrightarrow$?f $x \leq$?f $y)$.
lemma lfp_eq: "【 mono f; mono g; lfp $f \subseteq U$; lfp $g \subseteq U$;
$!!X . X \subseteq U \Longrightarrow f X=g X \rrbracket \Longrightarrow l f p f=l f p g "$
It says that if we have an upper bound U for the $l f p$ of both f and g, and f and g behave the same below U, then they have the same lfp.

The following two tweaks improve proof automation:

```
lemmas \([\operatorname{simp}]=L \operatorname{simps}(5)\)
lemmas L_monoz \(=\) L_mono[unfolded mono_def]
```

To show that bury is idempotent we need a lemma:
lemma L_bury[simp]: " $X \subseteq Y \Longrightarrow L$ (bury c Y) $X=L$ c X "
proof(induction c arbitrary: X Y)
The proof is straightforward except for the case WHILE b DO c. The definition of L in this case means that we have to show an equality of two lfps. Lemma \llbracket mono ?f; mono ?g; lfp ?f \subseteq ? $U ; l f p ? g \subseteq ? U ; \wedge X . X \subseteq$? $U \Longrightarrow$?f $X=$?g $X \rrbracket \Longrightarrow l f p$?f $=l f p ? g$ comes to the rescue. We recommend the upper bound lfp (λZ. vars $b \cup Y \cup L c Z)$. One of the two upper bound assumptions of lemma \llbracket mono ?f; mono ? g; lfp ?f \subseteq ? U; $l f p ? g \subseteq$? $U ; \wedge X . X \subseteq$? $U \Longrightarrow$?f $X=? g X \rrbracket \Longrightarrow l f p$?f $=l f p$? g can be proved by showing that U is a pre-fixpoint of f or g (see lemma lfp_lowerbound).
Now we can prove idempotence of bury, again by induction on c, but this time even the While case should be easy.
lemma bury_bury: " $X \subseteq Y \Longrightarrow$ bury (bury c Y) $X=$ bury c X "
Idempotence is a corollary:
corollary "bury (bury c X) $X=$ bury c X "

Homework 8.2 Independence, in Parallel Programs

Submission until Tuesday, December 17, 2013, 10:00am. 5 bonus points.
Extend the while language with a parallel operator $\|$, such that $c 1 \| c 2$ executes commands $c 1$ and $c 2$ in parallel, and define a small step semantics.
Show that, for your parallel language, you have vars c1 \cap vars $c \mathcal{2}=\{ \} \Longrightarrow(c 1 \| c 2)$ $\sim_{s}(c 1 ; c 2)$, i.e., sequential composition can be transformed to parallel execution if it works on different variables.
To solve this exercise, use the template from the webpage, which provides a sample solution from exercise 8.1 adapted to the parallel commands.
end

