
Technische Universität München WS 2013/14
Institut für Informatik 17. 12. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 9

Exercise 9.1 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the
bigstep semantics.

Use the exercise template that we provide on the course web page.

Exercise 9.2 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in
variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that MAX satisfies the following Hoare-triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Now define a program MUL that returns the product of x and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

1

Hints You may want to use the lemma algebra simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon S 1; S 2, you first continue the proof for S 2, thus
instantiating the intermediate assertion, and then do the proof for S 1. However, the first
premise of the Seq-rule is about S 1. Hence, you may want to use the rotated -attribute,
that rotates the premises of a lemma:

lemmas Seq bwd = Seq [rotated]

lemmas hoare rule[intro?] = Seq bwd Assign Assign ′ If

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong ≡ ′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::=N 0”

Prove that MAX wrong also satisfies the specification for MAX :

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

2

Homework 9 Be Original!

Submission until Tuesday, 14 January 2012, 10:00am.

Think up a nice formalization yourself!

Here are some ideas:

• Add some new language features to IMP, and redo some proofs (e.g., compiler,typing,Hoare-
Logic).

• A control flow graph (CFG) is a graph where edges are labeled by either an assign-
ment or a boolean expression. An assignment causes a state change and a boolean
expression restricts which states can traverse this edge.

Formalize an operational semantics of control flow graphs and prove some nice re-
sults, e.g., compiler (IMP→CFG or CFG→STACK), Floyd-style correctness proofs.

• Compile commands to a register machine, and show correctness.

• Prove correct some non-trivial program, e.g., square roots using the bisection
method. Hint: A modular approach of writing and proving programs may help,
e.g., you may try to reuse a program for multiplication and its correctness proof,
rather then inlining the program and the proof.

• Write and prove correct a (simple) termination checker. E.g., while loops that only
count down always terminate.

The following ideas require some amount of non-lecture related knowledge:

• Prove some interesting result about automata/formal language theory

• Formalize some results from mathematics

You should yourself set a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

You are welcome to discuss your plans with one of the tutors before starting your project.

3

