
Technische Universität München WS 2013/14
Institut für Informatik 14. 1. 2013

Prof. Tobias Nipkow, Ph.D.
Peter Lammich, Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 11

The following exercises are typical exam exercises. You are supposed to solve them on
a sheet of paper, without using Isabelle/HOL.

Exercise 11.1 Using the VCG, Total correctness

For each of the three programs given here, you must prove partial correctness and total
correctness. For the partial correctness proofs, you should first write an annotated
program, and then use the verification condition generator from VCG. For the total
correctness proofs, use the Hoare rules from Hoare Total.

Some abbreviations, freeing us from having to write double quotes for concrete variables:

abbreviation “aa ≡ ′′a ′′” abbreviation “bb ≡ ′′b ′′” abbreviation “cc ≡ ′′c ′′”
abbreviation “dd ≡ ′′d ′′” abbreviation “qq ≡ ′′q ′′” abbreviation “rr ≡ ′′r ′′”

Some useful simplification rules:

declare algebra simps[simp] declare power2 eq square[simp]

Rotated rule for sequential composition:

lemmas SeqTR = Hoare Total .Seq [rotated ]

Prove the following syntax-directed conditional rule (for total correctness):

lemma IfT :
assumes “`t {P1} c1 {Q}” and “`t {P2} c2 {Q}”
shows “`t {λs. (bval b s −→ P1 s) ∧ (¬ bval b s −→ P2 s)} IF b THEN c1 ELSE c2 {Q}”
oops

A convenient loop construct:

abbreviation “FOR v FROM a1 TO a2 DO c ≡
v ::= a1 ;; WHILE (Less (V v) a2 ) DO (c ;; v ::= Plus (V v) (N 1 ))”

abbreviation “ {b} FOR v FROM a1 TO a2 DO c ≡
v ::= a1 ;; {b} WHILE (Less (V v) a2 ) DO (c ;; v ::= Plus (V v) (N 1 ))”

1



Multiplication. Consider the following program MULT for performing multiplication
and the following assertions P MULT and Q MULT :

definition MULT2 :: com where
“MULT2 ≡ FOR dd FROM (N 0 ) TO (V aa) DO cc ::= Plus (V cc) (V bb)”

definition MULT :: com where “MULT ≡ cc ::= N 0 ;; MULT2”

definition P MULT :: “int ⇒ int ⇒ assn” where
“P MULT i j ≡ λs. s aa = i ∧ s bb = j ∧ 0 ≤ i”

definition Q MULT :: “int ⇒ int ⇒ assn” where
“Q MULT i j ≡ λs. s cc = i ∗ j ∧ s aa = i ∧ s bb = j”

Define an annotated program AMULT i j, so that when the annotations are stripped
away, it yields MULT. (The parameters i and j will appear only in the loop annotations.)

Hint: The program AMULT i j will be essentially MULT with an invariant annotation
iMULT i j at the FOR loop, which you have to define:

definition iMULT :: “int ⇒ int ⇒ assn” where
“iMULT i j ≡ undefined”

definition AMULT2 :: “int ⇒ int ⇒ acom” where
“AMULT2 i j ≡ {iMULT i j}

FOR dd FROM (N 0 ) TO (V aa) DO cc ::= Plus (V cc) (V bb)”

definition AMULT :: “int ⇒ int ⇒ acom” where
“AMULT i j ≡ (cc ::= N 0 ) ;; AMULT2 i j”

lemmas MULT defs = MULT2 def MULT def P MULT def Q MULT def iMULT def AMULT2 def
AMULT def

lemma strip AMULT : “strip (AMULT i j ) = MULT”
oops

Once you have the correct loop annotations, then the partial correctness proof can be
done in two steps, with the help of lemma vc sound ′.

lemma MULT correct : “` {P MULT i j} MULT {Q MULT i j}”
oops

The total correctness proof will look much like the Hoare logic proofs from Exercise
Sheet 9, but you must use the rules from Hoare Total instead. Also note that when
using rule Hoare Total .While fun ′, you must instantiate both the predicate P :: state ⇒
bool and the measure f :: state ⇒ nat. The measure must decrease every time the body
of the loop is executed. You can define the measure first:

definition mMULT :: “state ⇒ nat” where
“mMULT ≡ undefined”

lemma MULT totally correct : “`t {P MULT i j} MULT {Q MULT i j}”
oops

2



Division. Define an annotated version of this division program, which yields the quo-
tient and remainder of aa/bb in variables ′′q ′′ and ′′r ′′, respectively.

definition DIV1 :: com where “DIV1 ≡ qq ::= N 0 ;; rr ::= N 0”

definition DIV IF :: com where
“DIV IF ≡ (IF Less (V rr) (V bb) THEN Com.SKIP

ELSE (rr ::= N 0 ;; qq ::= Plus (V qq) (N 1 )))”

definition “DIV2 ≡ rr ::= Plus (V rr) (N 1 ) ;; DIV IF”

definition DIV :: com where
“DIV ≡ DIV1 ;; FOR cc FROM (N 0 ) TO (V aa) DO DIV2”

lemmas DIV defs = DIV1 def DIV IF def DIV2 def DIV def

definition P DIV :: “int ⇒ int ⇒ assn” where
“P DIV i j ≡ λs. s aa = i ∧ s bb = j ∧ 0 ≤ i ∧ 0 < j”

definition Q DIV :: “int ⇒ int ⇒ assn” where
“Q DIV i j ≡
λ s. i = s qq ∗ j + s rr ∧ 0 ≤ s rr ∧ s rr < j ∧ s aa = i ∧ s bb = j”

definition iDIV :: “int ⇒ int ⇒ assn” where
“iDIV i j ≡ undefined”

lemma strip ADIV : “strip (ADIV i j ) = DIV”
oops

lemma DIV correct : “` {P DIV i j} DIV {Q DIV i j}”
oops

definition mDIV :: “state ⇒ nat” where — Measure function:
“mDIV ≡ undefined”

lemma DIV totally correct : “`t {P DIV i j} DIV {Q DIV i j}”
oops

Square roots. Define an annotated version of this square root program, which yields
the square root of input aa (rounded down to the next integer) in output bb.

definition SQR1 :: com where “SQR1 ≡ bb ::= N 0 ;; cc ::= N 1”

definition SQR2 :: com where
“SQR2 ≡

bb ::= Plus (V bb) (N 1 );;
cc ::= Plus (V cc) (V bb);;
cc ::= Plus (V cc) (V bb);;
cc ::= Plus (V cc) (N 1 )”

3



definition SQR :: com where
“SQR ≡ SQR1 ;; (WHILE (Not (Less (V aa) (V cc))) DO SQR2 )”

definition P SQR :: “int ⇒ assn” where
“P SQR i ≡ λs. s aa = i ∧ 0 ≤ i”

definition Q SQR :: “int ⇒ assn” where
“Q SQR i ≡ λs. s aa = i ∧ (s bb)ˆ2 ≤ i ∧ i < (s bb + 1 )ˆ2”

lemma SQR totally correct : “`t {P SQR i} SQR {Q SQR i}”

Exercise 11.2 Where is the mistake in the following argument?

The natural numbers form a complete lattice because any set of natural numbers has an
infimum, its least element.

Exercise 11.3 Collecting Semantics

Recall the datatype of annotated commands (type ′a acom) and the collecting semantics
(function step :: state set ⇒ state set acom ⇒ state set acom) from the lecture. We
reproduce the definition of step here for easy reference. (Recall that post c simply returns
the right-most annotation from command c.)

step S (SKIP { }) = SKIP {S}
step S (x ::=e { }) = x ::= e {{s(x :=aval e s) | s. s ∈ S}}
step S (c1 ;; c2) = step S c1 ;; step (post c1) c2
step S (IF b THEN {P1} c1 ELSE {P2} c2 { }) =

IF b THEN {{s∈S . bval b s}} step P1 c1
ELSE {{s∈S . ¬ bval b s}} step P2 c2
{post c1 ∪ post c2}

step S ({I } WHILE b DO {P} c { }) =
{S ∪ post c}
WHILE b DO {{s∈I . bval b s}} step P c
{{s∈I . ¬ bval b s}}

In this exercise you must evaluate the collecting semantics on the example program
below by repeatedly applying the step function.

c = (IF x < 0
THEN {A1}

{A2} WHILE 0 < y DO {A3} (y := y + x {A4}) {A5}
ELSE {A6} SKIP {A7}) {A8}

Let S be {〈−2 ,3 〉,〈1 ,2 〉}, abbreviated −2 ,3 | 1 ,2. Calculate column n+1 in the table
below by evaluating step S c with the annotations for c taken from column n. For

4



conciseness, we use “〈i , j 〉” as notation for the state < ′′x ′′:=i , ′′y ′′:=j>.
0 1 2 3 4 5 6 7 8 9 10

A1 ∅
A2 ∅
A3 ∅
A4 ∅
A5 ∅
A6 ∅
A7 ∅
A8 ∅

Homework 11.1 P&P proof for complete lattices

Submission until Tuesday, 21. 1. 2013, 10:00am.

Make a pen & paper proof for the following statement:

In a complete lattice
⊔

S =
d
{u. ∀ s∈S . s ≤ u} is the least upper bound of S.

Homework 11.2 Counterexamples

Submission until Tuesday, 21. 1. 2013, 10:00am.

We know that least pre-fixpoints of monotone functions are also least fixpoints.

1. Show that leastness matters: find a (small!) partial order with a monotone function
that has a pre-fixpoint that is not a fixpoint.

2. Show that the reverse implication does not hold: find a partial order with a mono-
tone function function that has a least fixpoint that is not a least pre-fixpoint.

5


