Semantics of Programming Languages Exercise Sheet 11

The following exercises are typical exam exercises. You are supposed to solve them on a sheet of paper, without using Isabelle/HOL.

Exercise 11.1 Using the VCG, Total correctness

For each of the three programs given here, you must prove partial correctness and total correctness. For the partial correctness proofs, you should first write an annotated program, and then use the verification condition generator from VCG. For the total correctness proofs, use the Hoare rules from *Hoare_Total*.

Some abbreviations, freeing us from having to write double quotes for concrete variables:

abbreviation " $aa \equiv ''a''$ " abbreviation " $bb \equiv ''b''$ " abbreviation " $cc \equiv ''c''$ " abbreviation " $dd \equiv ''d''$ " abbreviation " $qq \equiv ''q''$ " abbreviation " $rr \equiv ''r''$ "

Some useful simplification rules:

declare algebra_simps[simp] declare power2_eq_square[simp]

Rotated rule for sequential composition:

lemmas $SeqTR = Hoare_Total.Seq[rotated]$

Prove the following syntax-directed conditional rule (for total correctness):

lemma IfT: assumes " $\vdash_t \{P1\} c_1 \{Q\}$ " and " $\vdash_t \{P2\} c_2 \{Q\}$ " shows " $\vdash_t \{\lambda s. (bval \ b \ s \longrightarrow P1 \ s) \land (\neg \ bval \ b \ s \longrightarrow P2 \ s)\}$ IF b THEN $c_1 \ ELSE \ c_2 \{Q\}$ " oops

A convenient loop construct:

abbreviation "FOR v FROM at TO at DO $c \equiv v ::= at$;; WHILE (Less (V v) at DO (c ;; v ::= Plus (V v) (N t))"

abbreviation "{b} FOR v FROM a1 TO a2 DO $c \equiv$ v ::= a1 ;; {b} WHILE (Less (V v) a2) DO (c ;; v ::= Plus (V v) (N 1))" **Multiplication.** Consider the following program MULT for performing multiplication and the following assertions $P_{-}MULT$ and $Q_{-}MULT$:

definition MULT2 :: com where " $MULT2 \equiv FOR \ dd \ FROM \ (N \ 0) \ TO \ (V \ aa) \ DO \ cc ::= Plus \ (V \ cc) \ (V \ bb)$ "

definition MULT :: com where " $MULT \equiv cc ::= N \ 0 \ ;; MULT2$ "

definition P_MULT :: "int \Rightarrow int \Rightarrow assn" where "P_MULT $i j \equiv \lambda s. s \ aa = i \land s \ bb = j \land 0 \le i$ "

definition Q_{-MULT} :: "int \Rightarrow int \Rightarrow assn" where " Q_{-MULT} i $j \equiv \lambda s. s \ cc = i * j \land s \ aa = i \land s \ bb = j$ "

Define an annotated program $AMULT \ i \ j$, so that when the annotations are stripped away, it yields MULT. (The parameters i and j will appear only in the loop annotations.) Hint: The program $AMULT \ i \ j$ will be essentially MULT with an invariant annotation $iMULT \ i \ j$ at the FOR loop, which you have to define:

definition *iMULT* :: "*int* \Rightarrow *int* \Rightarrow *assn*" where "*iMULT i j* \equiv *undefined*"

definition $AMULT2 :: "int \Rightarrow int \Rightarrow acom"$ where " $AMULT2 \ i \ j \equiv \{iMULT \ i \ j\}$ FOR dd FROM (N 0) TO (V aa) DO cc ::= Plus (V cc) (V bb)"

definition AMULT :: "int \Rightarrow int \Rightarrow acom" where "AMULT i $j \equiv (cc ::= N \ 0)$;; AMULT2 i j"

 $\label{eq:mmas} \ MULT_defs = MULT_def \ MULT_def \ P_MULT_def \ Q_MULT_def \ iMULT_def \ AMULT_def \ AMULT_def$

lemma $strip_AMULT$: " $strip (AMULT \ i \ j) = MULT$ " oops

Once you have the correct loop annotations, then the partial correctness proof can be done in two steps, with the help of lemma vc_sound' .

lemma $MULT_correct$: " $\vdash \{P_MULT \ i \ j\} MULT \ \{Q_MULT \ i \ j\}$ " oops

The total correctness proof will look much like the Hoare logic proofs from Exercise Sheet 9, but you must use the rules from *Hoare_Total* instead. Also note that when using rule *Hoare_Total*. *While_fun'*, you must instantiate both the predicate $P :: state \Rightarrow$ bool and the measure $f :: state \Rightarrow nat$. The measure must decrease every time the body of the loop is executed. You can define the measure first:

definition mMULT :: "state \Rightarrow nat" where " $mMULT \equiv$ undefined"

lemma $MULT_totally_correct$: " $\vdash_t \{P_MULT \ i \ j\} MULT \ \{Q_MULT \ i \ j\}$ " oops

Division. Define an annotated version of this division program, which yields the quotient and remainder of aa/bb in variables "q" and "r", respectively.

definition DIV1 :: com where "DIV1 $\equiv qq$::= N 0 ;; rr ::= N 0"

definition $DIV_IF :: com$ where " $DIV_IF \equiv (IF \ Less \ (V \ rr) \ (V \ bb) \ THEN \ Com.SKIP$ $ELSE \ (rr ::= N \ 0 \ ;; \ qq \ ::= Plus \ (V \ qq) \ (N \ 1)))$ "

definition "DIV2 \equiv rr ::= Plus (V rr) (N 1) ;; DIV_IF"

definition DIV :: com where " $DIV \equiv DIV1$;; FOR cc FROM (N 0) TO (V aa) DO DIV2"

lemmas DIV_defs = DIV1_def DIV_IF_def DIV2_def DIV_def

definition $P_DIV :: "int \Rightarrow int \Rightarrow assn"$ where " $P_DIV \ i \ j \equiv \lambda s. \ s \ aa = i \ \land \ s \ bb = j \ \land \ 0 \ \le i \ \land \ 0 < j"$

 $\begin{array}{l} \text{definition } Q_DIV :: ``int \Rightarrow int \Rightarrow assn" \text{ where} \\ ``Q_DIV i j \equiv \\ \lambda \ s. \ i = s \ qq \ * j \ + s \ rr \ \land \ 0 \ \leq s \ rr \ \land \ s \ rr \ < j \ \land \ s \ aa = i \ \land \ s \ bb = j" \end{array}$

definition *iDIV* :: "*int* \Rightarrow *int* \Rightarrow *assn*" where "*iDIV i j* \equiv *undefined*"

lemma $strip_ADIV$: " $strip (ADIV \ i \ j) = DIV$ " oops

lemma $DIV_correct$: "⊢ { $P_DIV i j$ } $DIV \{Q_DIV i j\}$ " oops

definition mDIV :: "state \Rightarrow nat" where — Measure function: " $mDIV \equiv$ undefined"

lemma $DIV_totally_correct$: " $\vdash_t \{P_DIV \ i \ j\} \ DIV \ \{Q_DIV \ i \ j\}$ " oops

Square roots. Define an annotated version of this square root program, which yields the square root of input *aa* (rounded down to the next integer) in output *bb*.

definition SQR1 :: com where " $SQR1 \equiv bb ::= N 0$;; cc ::= N 1"

```
definition SQR2 :: com where

"SQR2 \equiv

bb ::= Plus (V bb) (N 1);;

cc ::= Plus (V cc) (V bb);;

cc ::= Plus (V cc) (V bb);;

cc ::= Plus (V cc) (N 1)"
```

definition SQR :: com where " $SQR \equiv SQR1$;; (WHILE (Not (Less (V aa) (V cc))) DO SQR2)" definition $P_SQR ::$ "int \Rightarrow assn" where " $P_SQR \ i \equiv \lambda s. \ s \ aa = i \land 0 \le i$ " definition $Q_SQR ::$ "int \Rightarrow assn" where " $Q_SQR \ i \equiv \lambda s. \ s \ aa = i \land (s \ bb) \ 2 \le i \land i < (s \ bb + 1) \ 2$ " lemma $SQR_totally_correct:$ " $\vdash_t \{P_SQR \ i\} \ SQR \ \{Q_SQR \ i\}$ "

Exercise 11.2 Where is the mistake in the following argument?

The natural numbers form a complete lattice because any set of natural numbers has an infimum, its least element.

Exercise 11.3 Collecting Semantics

Recall the datatype of annotated commands (type 'a acom) and the collecting semantics (function step :: state set \Rightarrow state set acom \Rightarrow state set acom) from the lecture. We reproduce the definition of step here for easy reference. (Recall that post c simply returns the right-most annotation from command c.)

 $step \ S \ (SKIP \ \{ _\}) = SKIP \ \{S\} \\ step \ S \ (x::=e \ \{ _\}) = x ::= e \ \{ \{s(x:=aval \ e \ s) \ | \ s. \ s \in S\} \} \\ step \ S \ (c_1 \ ;; \ c_2) = step \ S \ c_1 \ ;; \ step \ (post \ c_1) \ c_2 \\ step \ S \ (IF \ b \ THEN \ \{P_1\} \ c_1 \ ELSE \ \{P_2\} \ c_2 \ \{_\}) = \\ IF \ b \ THEN \ \{\{s \in S. \ bval \ b \ s\} \} \ step \ P_1 \ c_1 \\ ELSE \ \{\{s \in S. \ \neg \ bval \ b \ s\} \} \ step \ P_2 \ c_2 \\ \{post \ c_1 \ \cup \ post \ c_2\} \\ step \ S \ (\{I\} \ WHILE \ b \ DO \ \{P\} \ c \ \{_\}) = \\ \{S \cup \ post \ c\} \\ WHILE \ b \ DO \ \{\{s \in I. \ bval \ b \ s\} \} \ step \ P \ c \\ \{\{s \in I. \ \neg \ bval \ b \ s\} \} \ step \ P \ c \\ \{s \in I. \ \neg \ bval \ b \ s\} \}$

In this exercise you must evaluate the collecting semantics on the example program below by repeatedly applying the step function.

$$c = (IF \ x < 0 \\ THEN \ \{A_1\} \\ \{A_2\} \ WHILE \ 0 < y \ DO \ \{A_3\} \ (y := y + x \ \{A_4\}) \ \{A_5\} \\ ELSE \ \{A_6\} \ SKIP \ \{A_7\}) \ \{A_8\}$$

Let S be $\{\langle -2,3 \rangle, \langle 1,2 \rangle\}$, abbreviated $-2,3 \mid 1,2$. Calculate column n+1 in the table below by evaluating step S c with the annotations for c taken from column n. For

concisences, we use $\langle i, j \rangle$ as notation for the state $\langle x \rangle = i, g \rangle = j > i$											
	0	1	2	3	4	5	6	7	8	9	10
A_1	Ø										
A_2	Ø										
A_3	Ø										
A_4	Ø										
A_5	Ø										
A_6	Ø										
A_7	Ø										
A_8	Ø										

conciseness, we use " $\langle i, j \rangle$ " as notation for the state $\langle x'' := i, y'' := j \rangle$.

Homework 11.1 P&P proof for complete lattices

Submission until Tuesday, 21. 1. 2013, 10:00am.

Make a pen & paper proof for the following statement:

In a complete lattice $\bigsqcup S = \bigsqcup \{u, \forall s \in S, s \leq u\}$ is the least upper bound of S.

Homework 11.2 Counterexamples

Submission until Tuesday, 21. 1. 2013, 10:00am.

We know that least pre-fixpoints of monotone functions are also least fixpoints.

- 1. Show that leastness matters: find a (small!) partial order with a monotone function that has a pre-fixpoint that is not a fixpoint.
- 2. Show that the reverse implication does not hold: find a partial order with a monotone function function that has a least fixpoint that is not a least pre-fixpoint.