
Concrete Semantics
A Proof Assistant Approach

Tobias Nipkow

Fakultät für Informatik
Technische Universität München

2014-1-26

1



1 Introduction

2



1 Introduction
Background
This Course

3



Why Semantics?

Without semantics,
we do not really know what our programs mean.

We merely have a good intuition and a warm feeling.

Like the state of mathematics in the 19th century
— before set theory and logic entered the scene.

4



Intuition is important!

• You need a good intuition to get your work done
efficiently.

• To understand the average accounting program,
intuition suffices.

• To write a bug-free accounting program may require
more than intuition!

• I assume you have the necessary intuition.

• This course is about “beyond intuition”.

5



Intuition is not sufficient!

Writing correct language processors (e.g. compilers,
refactoring tools, . . . ) requires

• a deep understanding of language semantics,

• the ability to reason (= perform proofs) about the
language and your processor.

Example:
What does the correctness of a type checker even mean?
How is it proved?

6



Why Semantics??

We have a compiler — that is the ultimate semantics!!

• A compiler gives each individual program a
semantics.

• It does not help with reasoning about the PL or
individual programs.

• Because compilers are far too complicated.

• They provide the worst possible semantics.

• Moreover: compilers may differ!

7



The sad facts of life

• Most languages have one or more compilers.

• Most compilers have bugs.

• Few languages have a (separate, abstract)
semantics.

• If they do, it will be informal (English).

8



Bugs

• Google “compiler bug”

• Google “hostile applet”
Early versions of Java had various security holes.
Some of them had to do with an incorrect
bytecode verifier.

GI Dissertationspreis 2003:
Gerwin Klein: Verified Java Bytecode Verification

9



Standard ML (SML)
First real language with a mathematical semantics:
Milner, Tofte, Harper:
The Definition of Standard ML. 1990.

Robin Milner (1934–2010)
Turing Award 1991.

Main achievements: LCF (theorem proving)
SML (functional programming)
CCS, pi (concurrency)

10



The sad fact of life

SML semantics hardly used:

• too difficult to read to answer simple questions
quickly

• too much detail to allow reliable informal proof

• not processable beyond LATEX, not even executable

11



More sad facts of life

• Real programming languages are complex.

• Even if designed by academics, not industry.

• Complex designs are error-prone.

• Informal mathematical proofs of complex designs
are also error-prone.

12



The solution

Machine-checked language semantics and proofs

• Semantics at least type-correct

• Maybe executable

• Proofs machine-checked

The tool:

Proof Assistant (PA)
or

Interactive Theorem Prover (ITP)

13



Proof Assistants

• You give the structure of the proof

• The PA checks the correctness of each step

• Can prove hard and huge theorems

Government health warnings:

Time consuming
Potentially addictive

Undermines your naive trust in informal proofs

14



Terminology

This lecture course:

Formal = machine-checked
Verification = formal correctness proof

Traditionally:

Formal = mathematical

15



Two landmark verifications

C compiler
Competitive with gcc -O1

Xavier Leroy
INRIA Paris
using Coq

Operating system
microkernel (L4)

Gerwin Klein (& Co)
NICTA Sydney
using Isabelle

16



A happy fact of life

Programming language researchers
are increasingly using PAs

17



Why verification pays off

Short term: The software works!

Long term:

Tracking effects of changes by rerunning proofs

Incremental changes of the software
typically require only incremental changes of the proofs

Long term much more important than short term:

Software Never Dies

18



1 Introduction
Background
This Course

19



What this course is not about

• Hot or trendy PLs

• Comparison of PLs or PL paradigms

• Compilers (although they will be one application)

20



What this course is about

• Techniques for the description and analysis of
• PLs
• PL tools
• Programs

• Description techniques: operational semantics

• Proof techniques: inductions

Both informally and formally (PA!)

21



Our PA: Isabelle/HOL

• Developed mainly in Munich (Nipkow & Co) and
Paris (Wenzel)

• Started 1986 in Cambridge (Paulson)

• The logic HOL is ordinary mathematics

Learning to use Isabelle/HOL
is an integral part of the course

All exercises require the use of Isabelle/HOL

22



Why I am so passionate
about the PA part

• It is the future

• It is the only way to deal with complex languages
reliably

• I want students to learn how to write correct proofs

• I have seen too many proofs that look more like
LSD trips than coherent mathematical arguments

23



Overview of course

• Introduction to Isabelle/HOL

• IMP (assignment and while loops) and its semantics

• A compiler for IMP

• Hoare logic for IMP

• Type systems for IMP

• Program analysis for IMP

24



The semantics part of the course is mostly traditional

The use of a PA is leading edge

A growing number of universities offer related course

25



What you learn in this course goes far beyond PLs

It has applications in compilers, security,
software engineering etc.

It is a new approach to informatics

26


	Introduction

