
Technische Universität München WS 2014/15
Institut für Informatik 28. 10. 2014

Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich
Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic
expressions. Define a corresponding evaluation relation is aval :: aexp ⇒ state ⇒ val
⇒ bool as an inductive predicate:

inductive is aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is aval .intros to prove this example lemma.

lemma “is aval (Plus (N 2) (Plus (V x) (N 3))) s (2 + (s x + 3))”

Prove that the evaluation relation is aval agrees with the evaluation function aval. Show
implications in both directions, and then prove the if-and-only-if form.

lemma aval1 : “is aval a s v =⇒ aval a s = v”
lemma aval2 : “aval a s = v =⇒ is aval a s v”
theorem “is aval a s v ←→ aval a s = v”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values – e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.

fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec comp to show that programs output by the com-
piler never underflow the stack:

theorem exec comp: “exec (comp a) s stk = Some (aval a s # stk)”

1

Exercise 3.3 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional
construct:

datatype ifexp = Bc ′ bool | If ifexp ifexp ifexp | Less ′ aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.

2. Define a function translate, which translates ifexps to bexps. State and prove a
lemma showing that the translation is correct.

theory hw01
imports Main
begin

Homework 3.1 Register Machine from Hell

Submission until Tuesday, November 4, 2014, 10:00am.

Processors from Hell has released its next-generation RISC processor. It features an infi-
nite bank of registers R0, R1, etc, holding unbounded integers. Register R0 plays the role
of the accumulator and is the implicit source or destination register of all instructions.
Any other register involved in an instruction must be distinct from R0. To enforce this
requirement the processor implicitly increments the index of the other register. There
are 4 instructions:

LDI i has the effect R0 := i

LD n has the effect R0 := Rn+1

ST n has the effect Rn+1 := R0

ADD n has the effect R0 := R0 + Rn+1

where i is an integer and n a natural number.

The instructions are specified by:

datatype instr = LDI int | LD nat | ST nat | ADD nat

The state of the machine is just a function from register numbers to values

type synonym state = “nat ⇒ int”

Define a function to execute a single instruction

fun exec :: “instr ⇒ state ⇒ state” where

Lift your definition to lists of instructions

fun execs :: “instr list ⇒ state ⇒ state” where

Show that execs commutes with op @. Hint: The [simp] - attribute declares this as a
default simplifier rule, such that simp and auto will rewrite with this rule by default.

2

lemma [simp]: “ !!s. execs (xs @ ys) s = execs ys (execs xs s)”

Next, we want to write a compiler for arithmetic expressions. To simplify the mapping
from variables to registers, we define variable names to be natural numbers.

datatype expr = C int | V nat | A expr expr

fun val :: “expr ⇒ (nat ⇒ int) ⇒ int” where
“val(C i) s = i” |
“val(V n) s = s n” |
“val(A e1 e2) s = val e1 s + val e2 s”

You have been recruited to write a compiler from expr to instr list. You remember your
compiler course and decide to emulate a stack machine using free registers, i.e. registers
not used by the expression you are compiling. The type of your compiler is

fun cmp :: “expr ⇒ nat ⇒ instr list” where

where the second argument is the index of the first free register and can be used to store
intermediate results. The result of an expression should be returned in R0. Because R0

is the accumulator, you decide on the following compilation scheme: Variable i will be
held in Ri+1.

To actually compile an expression, you need to find an initial value for the free register
index. Define a function that returns the maximum variable used in an arithmetic
expression.

fun maxvar :: “expr ⇒ nat” where

Show that the value of expressions does not depend on variables greater than maxvar.

lemma [simp]: “ALL n <= maxvar e. s n = s ′ n =⇒ val e s = val e s ′”

Finally, prove that your compiler is correct. You will need to generalize the lemma to
any free register index > maxvar e.

Moreover, an auxiliary lemma may be useful, which states that a compiled program does
not change registers less than the index of the first free register.

Hint: Beware of off-by-one errors introduced by the implicit increment of the register
index. The register indexes in the state are shifted by one wrt. the registers in the
instructions!

theorem “execs (cmp e (maxvar e + 1)) s 0 = val e (s o Suc)”

Homework 3.2 a∗b∗ language checker

Submission until Tuesday, November 4, 2014, 10:00am. This homework is worth 5 bonus
points.

Use the file tmpl03 ab.thy for this exercise.

3

We define an inductive predicate accepting the language S = a∗b∗. The homework is
to define recursive functions over lists which parse the same language and then to show
that each word in S is accepted by is ab.

First we introduce the type of our language tokens containing only a and b

datatype ab = a | b

Then we define the following language S :

inductive set S :: “ab list set” where
“w ∈ S =⇒ [a] @ w ∈ S”
| “w ∈ S =⇒ w @ [b] ∈ S”
| “ [] ∈ S”

Now define a recursive function over ab list which checks that the list consists of a’s
followed by b’s. (Hint: define a helper function which only checks that the list only
consists of b’s.)

fun is ab :: “ab list ⇒ bool” where

Finally show the following theorem:

lemma “w ∈ S =⇒ is ab w”

4

