Technische Universitat Miinchen WS 2014/15
Institut fiir Informatik 11. 11. 2014, 11:11am
Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich
Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.
1. IF And b1 b2 THEN c1 ELSE c2 ~ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
WHILE And b1 b2 DO ¢ ~ WHILE b1 DO WHILE b2 DO ¢
3. WHILE And b1 b2 DO ¢ ~ WHILE b1 DO c;; WHILE And b1 b2 DO ¢
4. WHILE Or b1 b2 DO ¢ ~ WHILE Or b1 b2 DO c¢;; WHILE b1 DO ¢

N

Hint: Use the following definition for Or:

definition Or :: “bexp = bexp = bexp” where
“Or b1 b2 = Not (And (Not b1) (Not b2))”

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (¢; OR c2), that decides nondeterministically to execute c¢j or cg; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

Adapt the big step semantics to include rules for the new commands.

o

3. Prove that ¢y OR ¢3 ~ ¢o OR c;.

4. Prove: (IF b THEN c1 ELSE c2) ~ ((ASSUME b; c1) OR (ASSUME (Not b);
c2))

5. Adapt the small step semantics, and the equivalence proof of big and small step
semantics.

Note: It is easiest if you take the existing theories and modify them.

Homework 5.1 Fuel your executions

Submission until Tuesday, November 18, 2014, 10:00am. Note: We provide a template
for this homework on the lecture’s homepage.

If you try to define a function to execute a program, you will run into trouble with the
termination proof (The program might not terminate).

In this exercise, you will define an execution function that tries to execute the program
for a bounded number of steps. It gets an additional nat argument, called fuel, which
decreases in every step. If the execution runs out of fuel, it stops returning Nomne.

fun ezec :: “com = state = nat = state option” where
“exec s 0 = None”
| “exec SKIP s (Suc f) = Some s”
| “exec (z::=v) s (Suc f) = Some (s(z:=aval v s))”
| “exec (cl;;¢2) s (Suc f) = (
case (exec ¢l s f) of None = None | Some s’ = exec c2 s’ f)”
| “exec (IF b THEN c1 ELSE ¢2) s (Suc f) =
(if bval b s then exec cl s f else exec c2 s f)”
| “exec (WHILE b DO ¢) s (Suc f) = (
if bval b s then
(case (exec ¢ s f) of
None = None |
Some s' = exec (WHILE b DO ¢) s’ f)

else Some s)”

Prove that the execution function is correct wrt. the big-step semantics:

theorem exec_equiv_bigstep: “(Fi. exec ¢ s f = Some s’) «— (¢,8) = s

In the following, we give you some guidance for this proof:

The two directions are proved separately. The proof of the first direction should be quite
straightforward, and is left to you.

lemma exec_imp_bigstep: “exec ¢ s f = Some s' = (¢,8) = s’

For the other direction, prove a monotonicity lemma first: If the execution terminates
with fuel f, it terminates with the same result using a larger amount of fuel f+k.

lemma ezec_mono: “exec ¢ s f = Some s’ = exec ¢ s (f+k) = Some s'”
proof (induction c s f arbitrary: s’
rule: exec.induct|[case_names None SKIP ASS SEMI IF WHILE))
— Note: The case_names attribute assigns (new) names to the cases generated by the induction
rule, that can then be used with the case - command, as done below.
case (WHILE b ¢ s i s) thus ?case

Only the WHILE-case requires some effort. Hint: Make a case distinction on the value of the
condition b.

qed (auto split: option.split option.split_asm)

The main lemma is proved by induction over the big-step semantics. Remember the
!/

adapted induction rule big_step_induct that nicely handles the pattern big_step (c,s) s'.

lemma bigstep_imp_si:
“(¢,8) = s' = Jk. exec ¢ s k = Some s'"”
proof (induct rule: big_step_induct)

We demonstrate the skip, while-true and sequential composition case here. The other cases are
left to you!

case (Skip s) have “exec SKIP s 1 = Some s” by auto
thus “case by blast
next
case (WhileTrue b s1 ¢ s2 s3)
then obtain f1 f2 where “exec ¢ s1 f1 = Some s2”
and “exec (WHILE b DO c¢) s2 f2 = Some s3” by auto
with ezec_mono|of ¢ s1 f1 s2 f2]
exec_mono|of “WHILE b DO ¢” s2 f2 s3 f1] have
“exec ¢ s1 (f1+f2) = Some s2”
and “exec (WHILE b DO c) s2 (f2+f1) = Some s3”
by auto
hence “exzec (WHILE b DO c) s1 (Suc (f1+f2)) = Some s3”
using (bval b s1) by (auto simp add: add_ac)
thus “case by blast
next
case (Seq c1 sl s2 c2 s3)
then obtain fI f2 where “exec c1 sI f1 = Some s2” and “exec c2 s2 f2 = Some s3”
by auto
with ezec_mono[of ¢l s1 f1 s2 f2]
exec_mono|of ¢2 s2 f2 s3 f1]
have
“exec c1 s1 (f1+f2) = Some s2” and “exec ¢2 s2 (f2+f1) = Some s3”
by auto
hence “exec (c1;;¢2) s1 (Suc (f1+f2)) = Some s3” by (auto simp add: add_ac)
thus “case by blast

Finally, prove the main theorem of the homework:

theorem erec_equiv_bigstep: “(I k. exec ¢ s k = Some s') +— (¢,8) = s’

Homework 5.2 Skipping over Invisible States

Submission until Tuesday, November 18, 2014, 10:00am. Bonus homework, 5 bonus
points. Note: This is quite hard, do not waste too much time on it. Partial solutions
will be graded.

First, we avoid name clashes with the imp semantics:

hide_const AFzp.V — Hides the constant, so we can use V as parameter name again

We describe a transition system by a relation over states step :: ‘s rel. Note that ’s rel
is short for ('sx’s) set.

Intuitively, (s, s') € step means, that the system can go from state s to state s’ in one
step.

Next, let V : ’s set be a set of visible states. Define a constant skip that performs at
least one step, and continues performing steps until a visible state is reached:

inductive_set skip :: “’s set = 's rel = 's rel” for V step

For example, let v, v9,... be visible, and 41,49, ... be invisible states. If step admits the
steps v1 — g — i3 — vy, then we should have (vq, vyq) € skip V step and also (ig, v4)
€ skip V step.

The theories Transitive_Closure and Relation provide useful functions to compose step
relations. For example, stepl O step?2 is the relation that you obtain by first execut-
ing a stepl and then a step2. Moreover, step® is the reflexive transitive closure. Use
find_theorems to find some useful lemmas, for example

find_theorems “op O” name: “Relation.”
find_theorems “*” name: “induct”

Note: You can also write step “x instead of step*, it’s different syntax for the same thing,
namely rtrancl step. In order to get the second form in jEdit, type \<"sup>* , or use
the shortcut CTRL+e UP.

Your next task is to prove an alternative characterization of skip in terms of reflex-
ive transitive closure and function composition. Intuitively, the lemma below states,
that skip goes one step, then arbitrarily many steps from invisible states (—V is set
complement), and finally ends up in a visible state.

lemma “skip V step = (step O (step N ((—V) x UNIV))*) N (UNIV x V)”

Hints:
e Use Isar where it makes sense.
e Prove the two directions of this lemma separately, bring them into the form
(s,sNe... = (s,8Ne....
e In the «<—=-direction, the induction on reflexive transitive closure cannot be applied

immediately. Bring the statement into a form with an assumption (a,b) € (...)*
first.

e reflexive transitive closure comes with induction rules for both directions (prepend-
ing, appending). Figure out which one you need!

e Hammering on hard nuts sometimes helps to crack them!

