
Technische Universität München WS 2014/15
Institut für Informatik 18. 11. 2014

Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich
Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:

• The boolean value False is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

• For every boolean operation exists a corresponding instruction which, similar to
arithmetic instructions, operates on values on top of the stack.

• The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to False, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

Exercise 6.2 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma “deskip c ∼ c”

Remember lemma sim while cong for the WHILE case.

1

Homework 6.1 While Free Programs

Submission until Tuesday, November 25, 10:00am.

a) Show that while-free programs always terminate, i.e., show that for any while-free
command and any state, the big-step semantics yields a result state.

b) Show that non-terminating programs contain a while loop, i.e., show that all com-
mands, for which there is a state such that the big-step semantics yields no result, contain
a while loop.

Homework 6.2 Absolute Adressing

Submission until Tuesday, November 25, 10:00am.

The current instruction set uses relative addressing, i.e., the jump-instructions contain
an offset that is added to the program counter. An alternative is absolute addressing,
where jump-instructions contain the absolute address of the jump target.

Write a semantics that interprets the 3 types of jump instructions with absolute ad-
dresses.

fun iexec abs :: “instr ⇒ config ⇒ config”
definition exec1 abs :: “instr list ⇒ config ⇒ config ⇒ bool” (“ (/ `a (→/))” [59 ,0 ,59]
60)
lemma exec1 absI [intro]:

“ [[c ′ = iexec abs (P !!i) (i ,s,stk); 0 ≤ i ; i < size P]] =⇒ P `a (i ,s,stk) → c ′”

abbreviation exec abs :: “instr list ⇒ config ⇒ config ⇒ bool” (“ (/ `a (→∗/))” 50)

Write a function that converts a program from absolute to relative addressing:

cnv to rel :: instr list ⇒ instr list

Show that the semantics match wrt. your conversion.

P `a c →∗ c ′←→ cnv to rel P ` c →∗ c ′

Hints:

• First write a function that converts each instruction, depending on its address.
Then use the function index map, that is defined below, to convert a program.

• Prove the theorem for a single step first.

fun index map :: “ (int ⇒ ′a ⇒ ′a) ⇒ int ⇒ ′a list ⇒ ′a list”
— Map with index

where
“index map f i [] = []”
| “index map f i (x#xs) = f i x # index map f (i+1) xs”

2

Start with proving the following basic facts about index map, which may be helpful for
your main proof!

lemma index map len[simp]: “size (index map f i l) = size l”
— index map preserves size of list

lemma index map idx [simp]: “ [[0≤i ; i<size l]]
=⇒ index map f k l !! i = f (i+k) (l !!i)”
— index map commutes with list indexing

3

Homework 6.3 Control Flow Graphs

Submission until Tuesday, November 25, 2014, 10:00am. This homework is worth 5
bonus points.

From Homework 4.1:

type synonym (′q , ′l) lts = “ ′q ⇒ ′l ⇒ ′q ⇒ bool”
inductive word :: “ (′q , ′l) lts ⇒ ′q ⇒ ′l list ⇒ ′q ⇒ bool” for δ
where

empty : “word δ q [] q”
| prepend : “ [[δ q l qh; word δ qh ls q ′]] =⇒ word δ q (l#ls) q ′”

A control flow graph is a labeled transition system (cf. Homework 4.1), where the edges
are labeled with actions:

datatype action =
EAssign vname aexp — Assign variable
| ETest bexp — Only executable if expression is true
| ESkip
type synonym ′q cfg = “ (′q ,action) lts”

Intuitively, the control flow graph is executed by following a path and applying the effects
of the actions to the state.

Define the effect of an action to a state. Your function shall return None if the action is
not executable, i.e., a test of an expression that evaluates to False:

fun eff :: “action ⇒ state ⇀ state” where

Lift your definition to paths. Again, only paths where all tests succeed shall yield a
result 6= None.

fun eff list :: “action list ⇒ state ⇀ state” where

The control flow graph of a WHILE-Program can be defined over nodes that are com-
mands. Complete the following definition. (Hint: Have a look at the small-step semantics
first)

inductive cfg :: “com cfg” where
cfg assign: “cfg (n ::= e) (EAssign n e) (SKIP)”
| cfg Seq2 : “ [[cfg c1 e c1 ′]] =⇒ cfg (c1 ;;c2) e (c1 ′;;c2)”

Prove that the effects of paths in the CFG match the small-step semantics:

lemma eq path: “ (c,s) →∗ (c ′,s ′) ←→ (∃π. word cfg c π c ′ ∧ eff list π s = Some s ′)”

Hint. Prove the lemma for a single step first.

4

