Technische Universitat Miinchen WS 2014/15
Institut fiir Informatik 18. 11. 2014
Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich
Johannes Holzl

Semantics of Programming Languages

Exercise Sheet 6

Exercise 6.1 A different instruction set architecture

We consider a different instruction set which evaluates boolean expressions on the stack,
similar to arithmetic expressions:

e The boolean value Fulse is represented by the number 0, the boolean value True
is represented by any number not equal to 0.

e For every boolean operation exists a corresponding instruction which, similar to
arithmetic instructions, operates on values on top of the stack.

e The new instruction set introduces a conditional jump which pops the top-most
element from the stack and jumps over a given amount of instructions, if the
popped value corresponds to Fulse, and otherwise goes to the next instruction.

Modify the theory Compiler by defining a suitable set of instructions, by adapting the
execution model and the compiler and by updating the correctness proof.

Exercise 6.2 Deskip

Define a recursive function

fun deskip :: “com = com”

that eliminates as many SKIPs as possible from a command. For example:
deskip (SKIP;; WHILE b DO (z = a;; SKIP)) = WHILE b DO = ©:= a

Prove its correctness by induction on c:

lemma “deskip ¢ ~ ¢”

Remember lemma sim_while_cong for the WHILE case.

Homework 6.1 While Free Programs

Submission until Tuesday, November 25, 10:00am.

a) Show that while-free programs always terminate, i.e., show that for any while-free
command and any state, the big-step semantics yields a result state.

b) Show that non-terminating programs contain a while loop, i.e., show that all com-
mands, for which there is a state such that the big-step semantics yields no result, contain
a while loop.

Homework 6.2 Absolute Adressing

Submission until Tuesday, November 25, 10:00am.

The current instruction set uses relative addressing, i.e., the jump-instructions contain
an offset that is added to the program counter. An alternative is absolute addressing,
where jump-instructions contain the absolute address of the jump target.

Write a semantics that interprets the 3 types of jump instructions with absolute ad-
dresses.

fun iexec_abs :: “instr = config = config”
definition ezecl_abs :: “instr list = config = config = bool” (“(./ Fa (- =/ 2))7 [59,0,59]
60)
lemma execl_absl [intro]:
“le’ = dexec_abs (PW3) (i,s,stk); 0 < i; i < size P] = P+, (i,8,stk) — ¢'”

abbreviation exec_abs :: “instr list = config = config = bool” (“(_/ Fq (- =%/ 2))” 50)

Write a function that converts a program from absolute to relative addressing:

cnu_to_rel :: instr list = instr list

Show that the semantics match wrt. your conversion.

Pr,c—x*c = cnvtorel PF ¢ =% ¢’

Hints:

e First write a function that converts each instruction, depending on its address.
Then use the function index_map, that is defined below, to convert a program.

e Prove the theorem for a single step first.

fun index_map :: “(int = 'a ='a) = int = 'a list = 'a list”
— Map with index

where
“index_map fi[] = []”

| “index-map fi (x#zs) = fix # index-map f (i+1) xs”

Start with proving the following basic facts about index_map, which may be helpful for
your main proof!

lemma index-map_len[simp]: “size (index-map fil) = size I”
— index_map preserves size of list

lemma index-map_idz[simp]: “[0<i; i<size l]
= index-map f k1 i=f (i+k) (I!9)”
— index_map commutes with list indexing

Homework 6.3 Control Flow Graphs

Submission until Tuesday, November 25, 2014, 10:00am. This homework is worth 5
bonus points.

From Homework 4.1:

type_synonym ('q,'l) lts = “'qg = 'l = "¢ = bool”
inductive word :: “('q,’l) lts = "¢ = 'l list = 'q = bool” for §
where
empty: “word 0 q [] q”
| prepend: “[§ q I gh; word & gh ls q¢'] = word & q (I#ls) q¢'”

A control flow graph is a labeled transition system (cf. Homework 4.1), where the edges
are labeled with actions:

datatype action =

EAssign vname aexp — Assign variable
| ETest bexp — Only executable if expression is true
| ESkip

type_synonym 'q cfg = “(’q,action) lts”

Intuitively, the control flow graph is executed by following a path and applying the effects
of the actions to the state.

Define the effect of an action to a state. Your function shall return None if the action is
not executable, i.e., a test of an expression that evaluates to False:

fun eff 1 “action = state — state” where

Lift your definition to paths. Again, only paths where all tests succeed shall yield a
result # None.

fun eff-list :: “action list = state — state” where

The control flow graph of a WHILE-Program can be defined over nodes that are com-

mands. Complete the following definition. (Hint: Have a look at the small-step semantics
first)

inductive cfg :: “com cfg” where
cfg_assign: “cfg (n = e) (EAssign n e) (SKIP)”
| ¢fg-Seq2: “[c¢fgcl ecl’] = cfg (c1;;¢2) e (c1'55¢2)”

Prove that the effects of paths in the CFG match the small-step semantics:

lemma eq_path: “(c,s) —x (¢',8") «— (Im. word cfg ¢ ™ ¢’ A eff-list 7 s = Some s')”

Hint. Prove the lemma for a single step first.

