Semantics of Programming Languages

Exercise Sheet 7

Exercise 7.1 Type checker as recursive functions

Reformulate the inductive predicates $\Gamma \vdash a : \tau, \Gamma \vdash b$ and $\Gamma \vdash c$ as three recursive functions

fun atype :: "tyenv \Rightarrow aexp \Rightarrow ty option" **fun** bok :: "tyenv \Rightarrow bexp \Rightarrow bool" **fun** cok :: "tyenv \Rightarrow com \Rightarrow bool"

and prove

lemma atyping_atype: " $(\Gamma \vdash a : \tau) = (atype \ \Gamma \ a = Some \ \tau)$ " **lemma** btyping_bok: " $(\Gamma \vdash b) = bok \ \Gamma \ b$ " **lemma** ctyping_cok: " $(\Gamma \vdash c) = cok \ \Gamma \ c$ "

Exercise 7.2 Compiler optimization

A common programming idiom is $IF \ b \ THEN \ c$, i.e., the else-branch consists of a single SKIP command.

- 1. Look at how the program *IF Less* (V''x'') (N5) *THEN* ''y'' ::= N3 *ELSE SKIP* is compiled by *ccomp* and identify a possible compiler optimization.
- 2. Implement an optimized compiler (by modifying ccomp) which reduces the number of instructions for programs of the form $IF \ b \ THEN \ c.$
- 3. Extend the proof of *ccomp_bigstep* to your modified compiler.

Homework 7.1 Non-zero Typing

Submission until Tuesday, December 2, 2014, 10:00am.

Start with a fresh copy of *Types.thy.* Define a language that only knows real values. The binary operators are addition and division (op / in Isabelle/HOL). The semantics shall get stuck if trying to divide by zero.

Define a type system, that distinguishes between positive, negative, zero, and unknown signs of variables. Well-typed programs must not divide by zero. Adapt the theory up to the *type_sound*-theorem, i.e., show that in a well-typed program, every reachable non-skip state can make another step.

We only consider real values:

 $type_synonym val = real$

datatype aexp = Rc real | V vname | Plus aexp aexp | Div aexp aexp

The types are:

datatype ty = Neg|Pos|Zero|Any

Hint: For every operator, define a counterpart on types

definition $ty_{-}of_{-}c :: "real \Rightarrow ty"$ where

fun $ty_of_plus :: "ty \Rightarrow ty \Rightarrow ty"$ where fun $ty_of_div :: "ty \Rightarrow ty \Rightarrow ty option"$ where — A return value of *None* means "not typeable".

The typing rules for arithmetic expressions then become:

 $\begin{array}{l} \textbf{inductive } atyping :: ``tyenv \Rightarrow aexp \Rightarrow ty \Rightarrow bool" \\ (``(1_/ \vdash / (_:/_-))" [50,0,50] 50) \\ \textbf{where} \\ Rc_ty: ``\Gamma \vdash Rc \ r : (ty_of_c \ r)" \mid \\ V_ty: ``\Gamma \vdash Vx : \Gamma \ x" \mid \\ Plus_ty: ``\Gamma \vdash a1 : \tau1 \Longrightarrow \Gamma \vdash a2 : \tau2 \Longrightarrow \Gamma \vdash Plus \ a1 \ a2 : ty_of_plus \ \tau1 \ \tau2" \mid \\ Div_ty: ``\Gamma \vdash a1 : \tau1 \Longrightarrow \Gamma \vdash a2 : \tau2 \Longrightarrow ty_of_div \ \tau1 \ \tau2 = Some \ \tau \Longrightarrow \Gamma \vdash Div \ a1 \ a2 : \tau" \end{array}$

Note: Unlike in the original int/real type system, a single value does not have a unique type any more. E.g., the value π is described by both types, *Pos* and *Any*.

However, we can define a function that assigns each type a set of described values:

fun values_of_type :: "ty \Rightarrow real set" where

Then, a well-typed state is expressed as follows:

definition styping :: "typenv \Rightarrow state \Rightarrow bool" (infix " \vdash " 50) where " $\Gamma \vdash s \iff (\forall x. s x \in values_of_type (\Gamma x))$ "

Homework 7.2 Compiling *REPEAT*

Submission until Tuesday, December 2, 10:00am.

We extend com with a *REPEAT* c *UNTIL* b statement. With adding the following rules to our big-step semantics:

RepeatTrue: $\llbracket (c, s_1) \Rightarrow s_2$; bval b $s_2 \rrbracket \Longrightarrow (REPEAT \ c \ UNTIL \ b, s_1) \Rightarrow s_2$

 $\begin{array}{l} RepeatFalse: \llbracket (c, s_1) \Rightarrow s_2; \neg \ bval \ b \ s_2; (REPEAT \ c \ UNTIL \ b, \ s_2) \Rightarrow s_3 \rrbracket \Longrightarrow (REPEAT \ c \ UNTIL \ b, \ s_1) \Rightarrow s_3 \end{array}$

Building on this, extend the compiler ccomp and its correctness theorem $ccomp_bigstep$ to REPEAT loops. **Hint:** the recursion pattern of the big-step semantics and the compiler for REPEAT should match.

Download the files *Repeat_Big_Step.thy* and *Repeat_Compiler_Template.thy*. Finish the definition of *ccomp* and the proof of *ccomp_bigstep* in *Repeat_Compiler_Template.thy*, and submit this theory using as filename the usual schema *FirstnameLastname2.thy* (don't forget to also rename the Isar theory-header).