
Technische Universität München WS 2014/15
Institut für Informatik 25. 11. 2014

Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich
Johannes Hölzl

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Type checker as recursive functions

Reformulate the inductive predicates Γ ` a : τ , Γ ` b and Γ ` c as three recursive
functions

fun atype :: “tyenv ⇒ aexp ⇒ ty option”
fun bok :: “tyenv ⇒ bexp ⇒ bool”
fun cok :: “tyenv ⇒ com ⇒ bool”

and prove

lemma atyping atype: “ (Γ ` a : τ) = (atype Γ a = Some τ)”
lemma btyping bok : “ (Γ ` b) = bok Γ b”
lemma ctyping cok : “ (Γ ` c) = cok Γ c”

Exercise 7.2 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of ccomp bigstep to your modified compiler.

1

Homework 7.1 Non-zero Typing

Submission until Tuesday, December 2, 2014, 10:00am.

Start with a fresh copy of Types.thy. Define a language that only knows real values. The
binary operators are addition and division (op / in Isabelle/HOL). The semantics shall
get stuck if trying to divide by zero.

Define a type system, that distinguishes between positive, negative, zero, and unknown
signs of variables. Well-typed programs must not divide by zero. Adapt the theory
up to the type sound -theorem, i.e., show that in a well-typed program, every reachable
non-skip state can make another step.

We only consider real values:

type synonym val = real

datatype aexp = Rc real | V vname | Plus aexp aexp | Div aexp aexp

The types are:

datatype ty = Neg |Pos|Zero|Any

Hint: For every operator, define a counterpart on types

definition ty of c :: “real ⇒ ty” where

fun ty of plus :: “ty ⇒ ty ⇒ ty” where
fun ty of div :: “ty ⇒ ty ⇒ ty option” where

— A return value of None means “not typeable”.

The typing rules for arithmetic expressions then become:

inductive atyping :: “tyenv ⇒ aexp ⇒ ty ⇒ bool”
(“ (1 / `/ (:/))” [50 ,0 ,50] 50)

where
Rc ty : “Γ ` Rc r : (ty of c r)” |
V ty : “Γ ` V x : Γ x” |
Plus ty : “Γ ` a1 : τ1 =⇒ Γ ` a2 : τ2 =⇒ Γ ` Plus a1 a2 : ty of plus τ1 τ2” |
Div ty : “Γ ` a1 : τ1 =⇒ Γ ` a2 : τ2 =⇒ ty of div τ1 τ2 = Some τ =⇒ Γ ` Div a1 a2 : τ”

Note: Unlike in the original int/real type system, a single value does not have a unique
type any more. E.g., the value π is described by both types, Pos and Any.

However, we can define a function that assigns each type a set of described values:

fun values of type :: “ty ⇒ real set” where

Then, a well-typed state is expressed as follows:

definition styping :: “tyenv ⇒ state ⇒ bool” (infix “`” 50)
where “Γ ` s ←→ (∀ x . s x ∈ values of type (Γ x))”

2

Homework 7.2 Compiling REPEAT

Submission until Tuesday, December 2, 10:00am.

We extend com with a REPEAT c UNTIL b statement. With adding the following rules
to our big-step semantics:
RepeatTrue: [[(c, s1) ⇒ s2; bval b s2]] =⇒ (REPEAT c UNTIL b, s1) ⇒ s2
RepeatFalse: [[(c, s1)⇒ s2; ¬ bval b s2; (REPEAT c UNTIL b, s2)⇒ s3]] =⇒ (REPEAT
c UNTIL b, s1) ⇒ s3

Building on this, extend the compiler ccomp and its correctness theorem ccomp bigstep to
REPEAT loops. Hint: the recursion pattern of the big-step semantics and the compiler
for REPEAT should match.

Download the files Repeat Big Step.thy and Repeat Compiler Template.thy. Finish the
definition of ccomp and the proof of ccomp bigstep in Repeat Compiler Template.thy, and
submit this theory using as filename the usual schema FirstnameLastname2 .thy (don’t
forget to also rename the Isar theory-header).

3

