Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D., Dr. Peter Lammich Johannes Hölzl

Semantics of Programming Languages

Exercise Sheet 10

Exercise 10.1 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the bigstep semantics.

Use the exercise template that we provide on the course web page.

Exercise 10.2 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables a and b in variable c.

definition MAX :: com where

For the next task, you will need the following lemmas. Hint: Sledgehammering may be a good idea.

```
lemma [simp]: "(a::int) < b \implies max \ a \ b = b"
```

lemma [
$$simp$$
]: " $\neg(a::int) < b \implies max \ a \ b = a$ " **by** $auto$

Show that MAX satisfies the following Hoare-triple:

lemma "
$$\vdash \{\lambda s. \ True\} \ MAX \ \{\lambda s. \ s \ ''c'' = max \ (s \ ''a'') \ (s \ ''b'')\}$$
"

Now define a program MUL that returns the product of x and y in variable z. You may assume that y is not negative.

definition MUL :: com where

Prove that *MUL* does the right thing.

lemma "
$$\vdash \{\lambda s. \ 0 \le s \ ''y''\} \ MUL \ \{\lambda s. \ s \ ''z'' = s \ ''x'' * s \ ''y''\}$$
"

Hints You may want to use the lemma *algebra_simps*, that contains some useful lemmas like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon S_1 ; S_2 , you first continue the proof for S_2 , thus instantiating the intermediate assertion, and then do the proof for S_1 . However, the first premise of the Seq-rule is about S_1 . Hence, you may want to use the rotated-attribute, that rotates the premises of a lemma:

```
lemmas Seq_bwd = Seq[rotated]
```

```
lemmas hoare_rule[intro?] = Seq_bwd Assign Assign' If
```

Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.

For example, regard the following (wrong) implementation of MAX:

```
definition "MAX_wrong \equiv "a"::=N 0;; "b"::=N 0;; "c"::=N 0"
```

Prove that MAX-wrong also satisfies the specification for MAX:

What we really want to specify is, that MAX computes the maximum of the values of a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more accurate specification for MAX:

```
lemma "\vdash \{\lambda s. \ a=s \ ''a'' \land \ b=s \ ''b''\}
MAX
\{\lambda s. \ s \ ''c'' = \max \ a \ b \land a = s \ ''a'' \land b = s \ ''b''\}"
```

The specification for MUL has the same problem. Fix it!

Homework 10 Be Original!

Submission until Tuesday, 13 January 2012, 10:00am. (20 regular points, plus bonus points for nice submissions)

Think up a nice formalization yourself, for example

- Prove some interesting result about graph/automata/formal language theory
- Formalize some results from mathematics
- Prove some results from Program Optimization
- ...

In case you don't have a good idea, here are some further inspirations:

- Add some new language features to IMP, and redo some proofs (e.g., compiler, typing, Hoare-Logic).
- Do Floyd-style verification on control flow graphs.
- Compile commands to a register machine, and show correctness.
- Prove correct some non-trivial program, e.g., square roots using the bisection method. Hint: A modular approach of writing and proving programs may help, e.g., you may try to reuse a program for multiplication and its correctness proof, rather then inlining the program and the proof.

You should set yourself a time limit before starting your project. Also incomplete/unfinished formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended to do.

You are welcome to discuss your plans with one of the tutors before starting your project.