
Technische Universität München WS 2015/16
Institut für Informatik 24. 11. 2015

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Type checker as recursive functions

Reformulate the inductive predicates Γ ` a : τ , Γ ` b and Γ ` c as three recursive
functions

fun atype :: “tyenv ⇒ aexp ⇒ ty option”
fun bok :: “tyenv ⇒ bexp ⇒ bool”
fun cok :: “tyenv ⇒ com ⇒ bool”

and prove

lemma atyping atype: “ (Γ ` a : τ) = (atype Γ a = Some τ)”
lemma btyping bok : “ (Γ ` b) = bok Γ b”
lemma ctyping cok : “ (Γ ` c) = cok Γ c”

Exercise 7.2 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5 ) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of ccomp bigstep to your modified compiler.

Homework 7 Type Inference

Submission until Tuesday, Dec 1, 10:00am.

Specifying the types of variables is annoying, in particular, as they are mostly clear from
the program anyway.

In this exercise, you shall implement and prove correct a type inference scheme. The
type inference goes through the program similar to atyping, btyping, ctyping. But instead

1



of only checking whether the specified types match the program, it computes matching
types.

For this purpose, we extend types by an unknown value, which means that we do not
yet know the type of that variable. If the type inference encounters a program part
that determines the type of a variable typed with unknown, it will update the type
environment accordingly. If type inference encounters a program part that does not
match the already determined typing, it fails.

type synonym ety = “ty option”
type synonym etyenv = “vname ⇒ ety”

For efficiency (and simplicity) we want a one-pass type inference, i.e., we want to visit
each part of the program only once. However, this causes a problem: Consider the
possible types for expression (x + y) + (x + 2.3). Clearly, we have that both x and y
must be reals. However, when type inference is done in a top-down fashion, it will see
x+ y first, and infer x and y to be undetermined. Only later, if it sees the second term,
it has to somehow go back and set y to be real too, although y does not occur in the
second term.

To avoid this effect, we will assume that variables that we see in expressions have already
a determined type, and let type inference fail otherwise. This means, that input variables
of the program still need to be explicitly typed.

Define the following predicates, which determine the type of an arithmetic/Boolean
expression. A type should only be returned if the types of all variables occurring in the
expression are determined.

inductive infer aty :: “etyenv ⇒ aexp ⇒ ty ⇒ bool”
inductive infer bty :: “etyenv ⇒ bexp ⇒ bool”

A type environment is an instance of an extended type environment, if the two match
on all variables with determined types:

definition is inst :: “tyenv ⇒ etyenv ⇒ bool”
where “is inst Γ eΓ ≡ ∀ x τ . eΓ x = Some τ −→ Γ x = τ”

Show that type inference infers a valid typing, i.e., all instances of the inferred typing
are valid:

lemma ainfer : assumes “infer aty eΓ a T” and “is inst Γ eΓ” shows “atyping Γ a T”
lemma binfer : assumes “infer bty eΓ b” and “is inst Γ eΓ” shows “btyping Γ b”

Next, write a predicate that extends a typing according to a command. On an assign-
ment, the type of the assigned variable is determined to have the type of the right hand
side expression. If the assigned variable is already determined to have a different type,
no typing for the program should be inferred.

On an if-statement, the inferred types for the then and else part must be combined. If
combination is not possible, because a variable is determined to have two different types
in the then and else part, no typing for the program should be inferred. This is expressed
by the following predicate:

2



definition combine :: “etyenv ⇒ etyenv ⇒ etyenv ⇒ bool” where
“combine eΓ1 eΓ2 eΓ ≡

eΓ=eΓ1 ++eΓ2
∧ (∀ x τ1 τ2 . eΓ1 x = Some τ1 ∧ eΓ2 x = Some τ2 −→ τ1 =τ2 )”

inductive infer cty :: “etyenv ⇒ com ⇒ etyenv ⇒ bool”

As a test, show that your type inference works for the following program

definition “test c ≡
′′x ′′::=Ic 0 ;;
(IF Less (V ′′x ′′) (Ic 2 ) THEN SKIP ELSE ′′y ′′ ::= Rc 1 .0 );;
′′y ′′ ::= Plus (V ′′y ′′) (Rc 3 .1 )”

lemma “ ∃ eΓ ′. infer cty (λ . None) test c eΓ ′”

As sketched below, a safe way to prove such a lemma is to apply the introduction rules manually.
Of course, you may also try to automate this proof. Note that you probably have to adjust the
applied introduction rules to your solution!

unfolding test c def
apply (rule exI )

apply (rule infer cty .intros(4 )) apply (rule infer cty .intros(4 )) apply (rule infer cty .intros(2 ))
apply (rule infer aty .intros) apply simp — and so on ...

Finally, prove the following lemma:

lemma assumes “infer cty eΓ c eΓ ′” and “is inst Γ eΓ ′” shows “ctyping Γ c”

Hint: You will need some auxiliary lemmas. The main idea is that infer cty only de-
termines more types, but does not change already determined ones, and that if type
inference for aexp and bexp works on a type environment, it also works on a more deter-
mined type environment. You may use op ⊆m (map le, look it up using find theorems!)
to express that a type environment is less determined than another one.

Moreover, it may be advantageous to prove some auxiliary lemmas about op ⊆m, is inst,
combine and the relation of these concepts, rather then proving these things in the main
proof.

Note: If you feel more comfortable with this, you may also develop a functional solution,
in the spirit of exercise 7.1.

3


