Technische Universitat Miinchen WS 2015/16
Institut fiir Informatik 15. 12. 2015
Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 10

Exercise 10.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

First, write a program that stores the maximum of the values of variables ¢ and b in
variable c.

definition MAX :: com where
For the next task, you will need the following lemmas. Hint: Sledgehammering may be
a good idea.
lemma [simp]: “(a:int)<b = maz a b = b”
lemma [simp]: “—(a:int)<b = maz a b = a”
by auto
Show that MAX satisfies the following Hoare-triple:
lemma “F {Xs. True} MAX {As. s ""¢" = maz (s "a’) (s "b")}”
Now define a program MUL that returns the product of x and y in variable z. You may
assume that y is not negative.

definition MUL :: com where

Prove that MUL does the right thing.
lemma “ {Xs. 0 < s "y"} MUL {Xs. s "z"" = s "z"" % s "y"}”

Hints You may want to use the lemma algebra_simps, that contains some useful lemmas
like distributivity.

Note that we use a backward assignment rule. This implies that the best way to do proofs
is also backwards, i.e., on a semicolon S1; S, you first continue the proof for So, thus
instantiating the intermediate assertion, and then do the proof for 1. However, the first
premise of the Seg-rule is about S;. Hence, you may want to use the rotated-attribute,
that rotates the premises of a lemma:

lemmas Seq_bwd = Seq[rotated]

lemmas hoare_rule[intro?] = Seq_bwd Hoare.Assign Assign’ If

Note that our specifications still have a problem, as programs are allowed to overwrite
arbitrary variables.

For example, regard the following (wrong) implementation of MAX:

definition “MAX_wrong = ""a’::=N 0;; ""b"":=N 0;; ""c¢'::=N 0”
Prove that MAX wrong also satisfies the specification for MAX:

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.
For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX:

lemma “+ {Xs. a=s "a” A b=s b}
MAX
{As.s "¢ =mazrabNa=s"a”" Nb=s"b"}”

The specification for MUL has the same problem. Fix it!

Exercise 10.2 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the
bigstep semantics.

Use the exercise template that we provide on the course web page.

Homework 10.1 Floyd's Method for Program Verification

Submission until Tuesday, Dec 22, 10:00am.

A flow graph is a directed graph with labeled edges. Labels come with an enabled
predicate and an effect function. The enabled predicate checks whether a label is enabled
in a state, and the effect function applies the effect of a label to a state.

The following formalizes this setting:

type_synonym ('n,’l) flowgraph = “'n = 'l = 'n = bool”

locale flowgraph =
fixes G :: “('n,’l) flowgraph”

fixes enabled :: “'l = 's = bool”
fixes effect :: “'l = 's = 's”
begin

Define a small-step semantics on flow graphs: Configurations are pairs of nodes and
states. A step is induced by an enabled edge, and applies the effect of the edge to the
state.

inductive step :: “('nx’s) = ('nx’'s) = bool”

We form the reflexive transitive closure over our small-step semantics:

abbreviation “steps = star step”

The idea of Floyd’s method is to annotate an invariant over states to each node in the
flow graph, and show that the invariant is preserved by the edges:

context

fixes I :: “'n = ('s = bool)”

assumes preserve: “[In s; Gnln'; enabled s] = In' (effectls)”
begin

Show that the invariant is preserved by multiple steps:

lemma preserves:
assumes “In s”
/ r
assumes “steps (n,s) (n’,s’)”
shows “I n’ s'”

end
end

Now, let’s instantiate the flow graph framework for IMP-programs. Edges are labeled
by conditions, assignments, or skip.

datatype label = Assign vname aexp | Cond bexp | Skip

Define the enabled and effect functions for edges:

fun enabled :: “label = state = bool”

fun effect :: “label = state = state”

For nodes, we use commands. Similar to the small-step semantics, a node indicates the
command that still has to be executed. Define the flow graph for IMP programs. We
give you the case for assignment and if-false here, you have to define the other cases.
Make sure that you use the same intermediate steps as op — does, this will simplify the
next proof:

inductive cfg :: “com = label = com = bool”
where

“cfg (z::=a) (Assign x a) SKIP”

| “cfg (IF b THEN c1 ELSE ¢2) (Cond (Not b)) c2”

The following instantiates the flow graph framework:

interpretation flowgraph cfg enabled effect .
term step term steps

Show that execution of flow graphs and the small-step semantics coincide:

lemma steps_eq: “cs —* cs’ < steps cs cs'”

Combine your results to prove the following theorem, which allows you to prove cor-
rectness of programs with Floyd’s method. (Hint: Big and small-step semantics are
equivalent!)
lemma floyd:
assumes PRE: “Ns. Ps = I ¢ s”

assumes PRES: “Ansclc’ [Jefgcle’; Ics;enabledls] = 1Ic’' (effectis)”
assumes POST: “As. I SKIP s = @ s”

shows “E= {P} ¢ {Q}”

Homework 10.2 Application of Floyd's Method

Submission until Tuesday, Dec 22, 10:00am. 5 bonus points, quite hard
Apply Floyd’s method to verify the following program:
definition “P =
// // N 0”
WHILE (Less (N 0) (V
"p! = Plus (N 2) (V" ”)
"g!" = Plus (N (—1
) ”»

lemma “={s.s "z =z ANz >0} P {Xs.s''r" = 2xz}”

Hints:

e You have to define an appropriate invariant for each reachable node in the control
flow graph. Define the invariants for unreachable nodes to be false on all states.

e Use abbreviations for parts of the program to simplify writing the reachable nodes.

e Try use automation, in particular to identify unreachable nodes and discharge the
vacuous proof obligations resulting from assuming invariants of unreachable nodes.

o If necessary, use smaller programs to get a feeling for using this proof technique.

