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Exercise 12.1 Kleene fixed point theorem

Prove the Kleene fixed point theorem. We first introduce some auxiliary definitions:

A chain is a set such that any two elements are comparable. For the purposes of the
Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest
to formalize these as ascending sequences. (We can obtain the corresponding set using
the function range :: ( ′a ⇒ ′b) ⇒ ′b set.)

definition chain :: “ (nat ⇒ ′a::complete lattice) ⇒ bool”
where “chain C ←→ (∀n. C n ≤ C (Suc n))”

A function is continuous, if it commutes with least upper bounds of chains.

definition continuous :: “ ( ′a::complete lattice ⇒ ′b::complete lattice) ⇒ bool”
where “continuous f ←→ (∀C . chain C −→ f (Sup (range C )) = Sup (f ‘ range C ))”

The following lemma may be handy:

lemma continuousD : “ [[continuous f ; chain C ]] =⇒ f (Sup (range C )) = Sup (f ‘ range C )”
unfolding continuous def by auto

As warm-up, show that any continuous function is monotonic:

lemma cont imp mono:
fixes f :: “ ′a::complete lattice ⇒ ′b::complete lattice”
assumes “continuous f”
shows “mono f”

Hint: The relevant lemmas are

thm mono def monoI monoD

Finally show the Kleene fixed point theorem. Note that this theorem is important, as it
provides a way to compute least fixed points by iteration.

theorem kleene lfp:
fixes f :: “ ′a::complete lattice ⇒ ′a”
assumes CONT : “continuous f”
shows “lfp f = Sup (range (λi . (fˆˆi) bot))”

proof −
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We propose a proof structure here, however, you may deviate from this and use your own proof
structure:

let ?C = “λi . (fˆˆi) bot”
note MONO=cont imp mono[OF CONT ]

have CHAIN : “chain ?C”
show ?thesis
proof (rule antisym)

show “Sup (range ?C ) ≤ lfp f”
next

show “lfp f ≤ Sup (range ?C )”
qed

qed

Hint: Some relevant lemmas are

thm lfp unfold lfp lowerbound Sup subset mono range eqI

Exercise 12.2 Complete Lattice over Lists

Show that lists of the same length ordered pointwise form a partial order if the element
type is partially ordered. Partial orders are predefined as the type class ”order”.

instantiation list :: (order) order

Define the infimum operation for a set of lists. The first parameter is the length of the
result list.

definition Inf list :: “nat ⇒ ( ′a::complete lattice) list set ⇒ ′a list”

Show that your ordering and the infimum operation indeed form a complete lattice:

interpretation
Complete Lattice “ {xs. length xs = n}” “Inf list n” for n

Homework 12 Euclid’s Algorithm

Submission until Tuesday, January 19, 2011, 10:00am.

Euclid’s algorithm computes the greatest common divisor of two positive numbers. Its
pseudocode looks as follows:

while a 6= b do
if a < b then
b := b − a

else
a := a − b
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1. Write a program SUB a b which computes the difference between variables a and
b, without modifying them. The result should be stored in variable ′′r ′′. You may
assume that a 6= ′′r ′′ ∧ b 6= ′′r ′′.

2. Write a program EUCLID, which implements Euclid’s algorithm, and prove its
total correctness.

Hints:

• In Complex Main, there is a gcd function. It works for both, natural numbers and
integers.

• You may either try to prove a rule for SUB (similar to the assignment rule), or
unfold the definition of SUB during the proof of EUCLID.
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