
Technische Universität München WS 2015/16
Institut für Informatik 12. 01. 2016

Prof. Tobias Nipkow, Ph.D.
Dr. Peter Lammich

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Kleene fixed point theorem

Prove the Kleene fixed point theorem. We first introduce some auxiliary definitions:

A chain is a set such that any two elements are comparable. For the purposes of the
Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest
to formalize these as ascending sequences. (We can obtain the corresponding set using
the function range :: ( ′a ⇒ ′b) ⇒ ′b set.)

definition chain :: “ (nat ⇒ ′a::complete lattice) ⇒ bool”
where “chain C ←→ (∀n. C n ≤ C (Suc n))”

A function is continuous, if it commutes with least upper bounds of chains.

definition continuous :: “ ( ′a::complete lattice ⇒ ′b::complete lattice) ⇒ bool”
where “continuous f ←→ (∀C . chain C −→ f (Sup (range C )) = Sup (f ‘ range C ))”

The following lemma may be handy:

lemma continuousD : “ [[continuous f ; chain C ]] =⇒ f (Sup (range C )) = Sup (f ‘ range C )”
unfolding continuous def by auto

As warm-up, show that any continuous function is monotonic:

lemma cont imp mono:
fixes f :: “ ′a::complete lattice ⇒ ′b::complete lattice”
assumes “continuous f”
shows “mono f”

Hint: The relevant lemmas are

thm mono def monoI monoD

Finally show the Kleene fixed point theorem. Note that this theorem is important, as it
provides a way to compute least fixed points by iteration.

theorem kleene lfp:
fixes f :: “ ′a::complete lattice ⇒ ′a”
assumes CONT : “continuous f”
shows “lfp f = Sup (range (λi . (fˆˆi) bot))”

proof −

1



We propose a proof structure here, however, you may deviate from this and use your own proof
structure:

let ?C = “λi . (fˆˆi) bot”
note MONO=cont imp mono[OF CONT ]

have CHAIN : “chain ?C”
show ?thesis
proof (rule antisym)

show “Sup (range ?C ) ≤ lfp f”
next

show “lfp f ≤ Sup (range ?C )”
qed

qed

Hint: Some relevant lemmas are

thm lfp unfold lfp lowerbound Sup subset mono range eqI

Exercise 12.2 Complete Lattice over Lists

Show that lists of the same length ordered pointwise form a partial order if the element
type is partially ordered. Partial orders are predefined as the type class ”order”.

instantiation list :: (order) order

Define the infimum operation for a set of lists. The first parameter is the length of the
result list.

definition Inf list :: “nat ⇒ ( ′a::complete lattice) list set ⇒ ′a list”

Show that your ordering and the infimum operation indeed form a complete lattice:

interpretation
Complete Lattice “ {xs. length xs = n}” “Inf list n” for n

Homework 12 Euclid’s Algorithm

Submission until Tuesday, January 19, 2011, 10:00am.

Euclid’s algorithm computes the greatest common divisor of two positive numbers. Its
pseudocode looks as follows:

while a 6= b do
if a < b then
b := b − a

else
a := a − b

2



1. Write a program SUB a b which computes the difference between variables a and
b, without modifying them. The result should be stored in variable ′′r ′′. You may
assume that a 6= ′′r ′′ ∧ b 6= ′′r ′′.

2. Write a program EUCLID, which implements Euclid’s algorithm, and prove its
total correctness.

Hints:

• In Complex Main, there is a gcd function. It works for both, natural numbers and
integers.

• You may either try to prove a rule for SUB (similar to the assignment rule), or
unfold the definition of SUB during the proof of EUCLID.

3


