Final Exam
Semantics

11. 2. 2014

First name:

Last name:

Student-Id (Matrikelnummer):

Signature:

1. You may only use a pen/pencil, eraser, and two A4 sheets of notes to solve the exam.
Switch off your mobile phones!

2. Please write on the sheets of this exam. At the end of the exam, there are two extra
sheets. If you need more sheets, ask the supervisors during the exam.

3. You have 120 minutes to solve the exam.

4. Please put your student ID and ID-card or driver’s license on the table until we have
checked it.

5. Please do not leave the room in the last 20 minutes of the exam — you may disturb
other students who need this time.

6. All questions of this exam are worth the same number of points.

Proof Guidelines: We expect detailed, rigorous, mathematical proofs — but we do not
ask you to write Isabelle proof scripts! You are welcome to use standard mathematical
notation; you do not need to follow Isabelle syntax. Proof steps should be explained in
ordinary language like a typical mathematical proof.

Major proof steps, especially inductions, need to be stated explicitly. For each case of
a proof by induction, you must list the variables fixed, the inductive hypotheses
assumed (if any), and the goal to be proved.

Minor proof steps (corresponding to by simp, by blast etc) need not be justified if you
think they are obvious, but you should say which facts they follow from. You should be
explicit whenever you use a function definition or an introduction rule for an inductive
relation — especially for functions and relations that are specific to an exam question.
(You need not reference individual lemmas for standard concepts like integer arithmetic,
however, and in any case we do not ask you to recall lemma names from any Isabelle
theories.)

1 Command Equivalence

We call two commands ¢ and ¢’ equivalent wrt. the big-step semantics when ¢ started in
s terminates in s’ iff ¢’ started in the same s also terminates in the same s’. Formally:

cp~ca=(Vst (c1,s) =1 «— (co 8) = t)

1. Define a function is_.SKIP :: com = bool which holds on commands equivalent to
SKIP. The function is_.SKIP should be as precise as possible, but it should not
analyse arithmetic or boolean expressions.

Prove: is.SKIP ¢ = ¢ ~ SKIP

2. The following command equivalence is wrong. Give a counterexample in the form
of concrete instances for b1, ba, c1, co, and a state s.

WHILE b, DO IF by THEN ¢, ELSE ¢, »
~ IF by THEN (WHILE by DO ¢1) ELSE (WHILE by DO ¢3)

3. Define a condition P on by, ba, ¢1, and ¢y such that the previous statement (x)
holds, i.e. P by by ¢1 co = ()
Your condition should be as precise as possible, but only using:
e [vars :: com = vname set (all left variables, i.e. written variables),
e rvars :: com = vname set (all right variables, i.e. all read variables),
e vars :: bexp = vname set (all variables in a condition), and
e boolean connectives and set operations

No proof required.

2 Palindrome — Induction

A palindrome is a word which reads the same in forward and backward direction. We
introduce an inductive predicate palindrome :: 'a list = bool:

inductive palindrome where

“palindrome [|”
| “palindrome [x]
| “palindrome s = palindrome ([z] @ zs Q [z])”

2

zs @ ys is the concatenation of the lists zs and ys. rev is list reversal:

“rev [| = [

“rev (x # xs) = rev xs Q [x]”

1. Show palindrome ©s = rev xs = xs.

2. Show rev s = xs = palindrome xs.

You are allowed to use rule induction, structural induction, and the following induction
rule:

P] Vz. P [x] Voyas. Prs — P ([z] @ zs Q [y])
Vzs. P s

IND

3 Hoare-Logic

We extend IMP by an assertion command ASSERT bexp. Intuitively, the execution gets
stuck if the asserted expression evaluates to false, otherwise ASSERT bexp behaves like
SKIP. This is expressed by adding the following rule to the big-step semantics:

assert: bval b s = (ASSERT b,s) = s
Moreover, we add the following rule to the Hoare-Logic for total correctness:

(Vs. Ps — Qs A bvalbs) =+, {P} ASSERT b {Q}

Questions
1. What does the weakest precondition wp; (ASSERT b) @ look like?
2. Prove: by {wpy (ASSERT b) Q} ASSERT b {Q}.
3. Prove: by {P} ASSERT b {Q} = = {P} ASSERT b {Q}.

Hints
1. We have the definition
wpy ¢ @ = (As. It. (¢,8) =t N Q)
However, for Question 1, we want an equation that shows how to expand wp; syn-

tactically, i.e., the right hand side should not contain the Big/Small-step semantics.
You need not prove your equation here.

2. The main idea of the completeness proof is to show -, {wp; ¢ Q} ¢ {@}. What you
have to prove here is the case for the ASSERT-command. Your characterization
of wp from Question 1 may be useful here!

3. For the correctness proof, one shows, by induction over c:
F{P} ¢ {Q} = i {P} ¢ {Q}
What you have to prove here is the (base) case for the ASSERT-command.

Extra space for solving Question 3.

4 Abstract Interpretation

IMP is extended by adding a multiplication operator to arithmetic expressions:
datatype aexp = N int | V vname | Plus aexp aexp | Mul aexp aexp
Design a static analysis that tries to determine whether a variable is —1, 0, 1, or any

other value. The abstract domain consists of the values —1 | 0 | 1 | Any, and + is
defined as:

v(Any) = All integers
Define the ordering < on the abstract domain.
Define the join-operator U on the abstract domain.

Define the functions plus’ and mul’ on the abstract domain.

=W o=

Run the analysis on the following program:
x := -1; {A1}
x = x*xx + (-1); {A2}
IF b THEN
{A3} x=x+1 {A4}
ELSE
{A5} x=x%10 {A6}
{A7}
We have already added the annotations for you. Iterate the step function on this
program until a fixed point is reached, and document the result of each iteration
in the following table.

V2,345 6] 7 8 9

Al

A2

A3

A4

A5

A6

i

AT

Extra space for solving Question 4.

5 Fixed Point Theory

Let ’a be a complete lattice with ordering < and f::’a='a be a monotonic function.
Moreover, let zg be a post-fixpoint of f, i.e., zg < fzg. Prove:

LI {f#(zo) | i€N} < LI{f"* (o) | i€N}
Hint The least upper bound satisfies the following properties
reA=z<| |4 (upper)

(Vzed. z < u) = |_|A <u (least)

Extra Sheet 1

10

Extra Sheet 2

11

	Command Equivalence
	Palindrome – Induction
	Hoare-Logic
	Abstract Interpretation
	Fixed Point Theory

