Semantics of Programming Languages

Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and add the the following three lines at the beginning of this file.

theory Ex01 imports Main begin

Exercise 1.1 Calculating with natural numbers

Use the **value** command to turn Isabelle into a fancy calculator and evaluate the following natural number expressions:

"2 +
$$(2::nat)$$
" " $(2::nat) * (5 + 3)$ " " $(3::nat) * 4 - 2 * (7 + 1)$ "

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a list.

fun count :: "'a $list \Rightarrow 'a \Rightarrow nat$ "

Test your definition of count on some examples and prove that the results are indeed correct.

Prove the following inequality (and additional lemmas if necessary) about the relation between *count* and *length*, the function returning the length of a list.

theorem "count $xs \ x \le length \ xs$ "

Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function *snoc* that appends an element at the right end of a list. Do not use the existing append operator @ for lists.

```
fun snoc :: "'a list <math>\Rightarrow 'a \Rightarrow 'a list"
```

Convince yourself on some test cases that your definition of *snoc* behaves as expected, for example run:

```
value "snoc [] c"
```

Also prove that your test cases are indeed correct, for instance show:

```
lemma "snoc [] c = [c]"
```

Next define a function *reverse* that reverses the order of elements in a list. (Do not use the existing function *rev* from the library.) Hint: Define the reverse of x # xs using the *snoc* function.

```
fun reverse :: "'a list <math>\Rightarrow 'a list"
```

Demonstrate that your definition is correct by running some test cases, and proving that those test cases are correct. For example:

```
value "reverse [a, b, c]" lemma "reverse [a, b, c] = [c, b, a]"
```

Prove the following theorem. Hint: You need to find an additional lemma relating *reverse* and *snoc* to prove it.

```
theorem "reverse (reverse xs) = xs"
```

Homework 1.1 More Finger Exercise with Lists

Submission until Tuesday, November 1, 10:00am.

Mail a theory file named FirstnameLastname01.thy (replace with your name!) which runs in Isabelle-2016 without errors to wimmersatindottumdotde.

General hints:

- If you cannot prove a lemma, that you need for a subsequent proof, assume this lemma by using sorry.
- Define the functions as simply as possible. In particular, do not try to make them tail recursive by introducing extra accumulator parameters this will complicate the proofs!
- All proofs should be straightforward, and take only a few lines.

Define a function spread that spreads an element among a list. This is, spread a xs adds the element a behind every element of xs. The following evaluates to true, for instance:

value "spread
$$0 [1,2,3] = [1,0,2,0,3,0]$$
"

Prove that spreading an element among a list xs adds exactly length xs copies of the element to the list.

 $\mathbf{lemma} \ \textit{``count (spread a xs) a = count xs a + length xs''}$

Finally, prove the following lemma connecting reverse and spread:

 $\mathbf{lemma} \ \textit{``snoc (reverse (spread a xs))} \ a = a \ \# \ \textit{spread a (reverse xs)''}$

Hint: You may need an auxiliary lemma about spread and snoc.