Semantics of Programming Languages

Exercise Sheet 2

Homework 2.1 Tree traversal

Submission until Tuesday, November 8, 10:00am.

Recall the tree definition from the lecture and the function *mirror* to mirror trees: datatype 'a tree = $Tip \mid Node$ "'a tree" 'a "a tree"

fun mirror :: "'a tree \Rightarrow 'a tree" where "mirror Tip = Tip" | "mirror (Node l x r) = Node (mirror r) x (mirror l)"

Define a function in_order , which traverses a tree in in-order. Prove that your definition of in_order fulfills the specification

$\mathbf{theorem}$

"rev $(in_order t) = in_order (mirror t)$ "

where rev is the predefined function for reversing lists.

Homework 2.2 Tail-Recursive Form of Addition

Submission until Tuesday, November 8, 10:00am.

The list-reversing function *itrev* is an example of a *tail-recursive* function: Note that the right-hand side of the second equation for *itrev* is simply an application of *itrev* to different arguments.

fun *itrev* :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "*itrev* [] ys = ys" | "*itrev* (x # xs) ys = itrev xs (x # ys)"

In this homework problem you will define a tail-recursive version of addition for natural numbers, and prove that it is associative and commutative.

First, define a function $add :: nat \Rightarrow nat \Rightarrow nat$ in Isabelle that calculates the sum of its arguments. Like *itrev*, your definition should be tail-recursive: That is, in the recursive case the right-hand side should only be an application of add to different arguments.

fun $add :: "nat \Rightarrow nat \Rightarrow nat"$

Next, you must prove that *add* is associative. Hint: The proof will require at least one additional lemma. Also remember that some proofs by induction may require generalization with *arbitrary*.

theorem "add (add x y) z = add x (add y z)"

Finally, you must prove that add is commutative. This may require more lemmas in addition to those used for the associativity proof.

theorem "add x y = add y x"