
Technische Universität München WS 2016/17
Institut für Informatik 10. 01. 2017

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 10

Announcement: The deadline for the Christmas homework is extended to the same
deadline as for homework 10.1.

Exercise 10.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Note that available assignments can be used for program optimization, by avoiding
recomputation of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A” |
“AA (x ::= a) A = (if x ∈ vars a then {} else {(x , a)})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}” |

“AA (c1;; c2) A = (AA c2 ◦ AA c1) A” |
“AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A” |
“AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

fun gen :: “com ⇒ (vname × aexp) set”
and “kill” :: “com ⇒ (vname × aexp) set”

lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions

1

simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:

theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

Homework 10.1 Small-Step Security Typing

Submission until Tuesday, January 17, 2017, 10:00am. In this exercise we will consider
security typing for the small-step semantics. You should start with a copy of ~~/src/
HOL/IMP/Sec_Typing.thy.

Prove confinement. Hint: In addition to the obvious auxiliary lemma for a single step,
you may need another one.

lemma confinement steps: “ [[(c, s) →∗ (c ′, s ′); l ` c]] =⇒ s = s ′ (< l)”

Prove noninterference:

theorem noninterference:
“ [[(c, s) → (c ′, s ′); (c, t) → (c ′, t ′); 0 ` c; s = t (≤ l)]]
=⇒ s ′ = t ′ (≤ l)”

Does the following also hold?

theorem noninterference ′:
“ [[(c, s) →∗ (c ′, s ′); (c, t) →∗ (c ′, t ′); 0 ` c; s = t (≤ l)]]
=⇒ s ′ = t ′ (≤ l)”
oops

2

