
Technische Universität München WS 2016/17
Institut für Informatik 07. 02. 2017

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 14

Exercise 14.1 Small-Step Semantics for Parallel Execution

Consider a variant of Imp with parallel execution. That is, we add an operator c1 ‖ c2 for
combining commands c1 and c2 in parallel, and add the following rules to the small-step
semantics:

• ParLeft: (c1, s)→ (c′1, s
′) =⇒ (c1 ‖ c2, s)→ (c′1 ‖ c2, s′)

• ParRight: (c2, s)→ (c′2, s
′) =⇒ (c1 ‖ c2, s)→ (c1 ‖ c′2, s′)

• ParSkip: (SKIP ‖ c, s)→ (c, s)

We will denote the set of variables of a command c by vars c and write s1 ∼S s2 if:

∀x ∈ S. s1 x = s2 x

We want to show that c1 ‖ c2 can be sequentialized if vars c1 ∩ vars c2 = ∅.

Question 1 For now, you may assume the following fact:

(c1, s
′)→∗ (SKIP, s′′) =⇒ (c2, s)→∗ (c′2, s

′) (1)

=⇒ vars c1 ∩ vars c2 = ∅
=⇒ ∃t. (c1, s)→∗ (SKIP, t) ∧ (c2, t)→∗ (c′2, s

′′)

Prove:

(c1 ‖ c2, s)→∗ (SKIP, t) (2)

=⇒ vars c1 ∩ vars c2 = ∅
=⇒ (c1; ; c2, s)→∗ (SKIP, t)

Hint : Start with an induction on the transitive closure ∗, and use a case analysis on the
small-step semantics in the induction step.

Question 2 Now show (1). You may use the following facts:

(c, s)→∗ (c′, s′) =⇒ s ∼vars c s
′ (3)

(c, s)→∗ (c′, s′) ∧ s ∼vars c t =⇒ ∃t′. (c, t)→∗ (c′, t′) ∧ s′ ∼vars c t
′ (4)

where S denotes the complement of S. Hint: There is a direct proof, you do not need
induction.

1



Exercise 14.2 Parity analysis

Consider the following Imp program:

r := 11;

a := 11 + 11;

WHILE b DO

r := r + 1;

a := a - 2;

r := a + 1

Add annotations for parity analysis to this program, and iterate on it the step′ function
until a fixed point is reached. (More precisely, let C be the annotated program; you
need to compute (step′ >)0 C, (step′ >)1 C, (step′ >)2 C, etc.). Document the results
of each iteration in a table.

2


