
Technische Universität München WS 2017/18
Institut für Informatik 24.10.2017

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the file AExp.thy, which may be imported
as follows:

theory ex02 imports “HOL−IMP .AExp” begin

Exercise 2.1 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst :: vname ⇒ aexp ⇒ aexp ⇒ aexp that performs a syntactic
substitution, i.e., subst x a ′ a shall be the expression a where every occurrence of variable
x has been replaced by expression a ′.

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x :=aval a ′ s))”

Note: The expression s(x :=v) updates a function at point x. It is defined as:

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.2 Arithmetic Expressions With Side-Effects and Exceptions

We want to extend arithmetic expressions by the division operation and by the postfix
increment operation x++, as known from Java or C++.

The problem with the division operation is that division by zero is not defined. In this
case, the arithmetic expression should evaluate to a special value indicating an exception.

1

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
(val×state) option, i.e., it takes an expression and a state, and returns a value and a
new state, or an error value. Define the function aval ′.

(Hint: To make things easier, we recommend an incremental approach to this exercise:
First define arithmetic expressions with incrementing, but without division. The function
aval ′ for this intermediate language should have type aexp ′⇒ state ⇒ val×state. After
completing the entire exercise with this version, modify your definitions to add division
and exceptions.)

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “aval ′ (Div ′ (V ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Div ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) < ′′x ′′:=1>”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc: “aval ′ a s = Some (v ,s ′) =⇒ s x ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : if splits option.splits).

Exercise 2.3 Variables of Expression

Define a function that returns the set of variables occurring in an arithmetic expression.

fun vars :: “aexp ⇒ vname set” where

Show that arithmetic expressions do not depend on variables that they don’t contain.

lemma ndep: “x /∈ vars e =⇒ aval e (s(x :=v)) = aval e s”

2

Homework 2.1 Tree Locations

Submission until Thursday, November 2, 10:00am.

We define binary trees as follows:

datatype ′a tree = Node “ ′a tree” ′a “ ′a tree” | Leaf

In this exercise, we want to write a function that updates a sub-tree inside a larger tree.
For that, we first have to define what a “location” inside a tree means. In Isabelle, we
can use the type synonym to define shorthands for types.

type synonym loc = “bool list”

A location is a list of bools that are either True (go left) or False (go right). Define a
lookup function that takes a tree and a location and returns the sub-tree at that position.
If the location is too long, just return Leaf. Here are some examples:

fun lookup :: “ ′a tree ⇒ loc ⇒ ′a tree”
value “lookup (Leaf ::nat tree) [] = Leaf”
value “lookup (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False] = Node Leaf 2 Leaf”
value “lookup (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False, True] = Leaf”
value “lookup (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False, True, False] = Leaf”

Now, define a function contained that returns True or False depending on whether the
location exists in the tree.

fun contained :: “ ′a tree ⇒ loc ⇒ bool”
value “contained (Leaf ::nat tree) []”
value “contained (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False]”
value “contained (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False, True]”
value “¬ contained (Node Leaf (3 ::nat) (Node Leaf 2 Leaf)) [False, True, False]”

Finally, a function update that replaces the sub-tree at a given location by a new sub-tree.
If the location does not exist, return the original tree unchanged.

fun update :: “ ′a tree ⇒ loc ⇒ ′a tree ⇒ ′a tree”

Prove the following lemmas. Hints:

• Use computation induction.

• You might need a lemma about lookup.

lemma “¬ contained t loc =⇒ update t loc t ′ = t”
lemma “contained t loc =⇒ lookup (update t loc t ′) loc = t ′”

3

Homework 2.2 Where expressions

Submission until Thursday, November 2, 10:00am.

The following adds a where construct to arithmetic expressions:

datatype wexp = N val | V vname | Plus wexp wexp | Where wexp vname wexp

The new Where constructor acts like in mathematical texts, where variables are defined
after they are used. For example, the sentence “compute f(n) where n = g(x)” ultimately
means “compute f(g(x))”. Applied to our arithmetic expressions, this means evaluating
Where t x e requires evaluating e, then adding the result to the state using the variable
name x and finally evaluating t.

Define a function wval that evaluates wexp expressions.

fun wval :: “wexp ⇒ state ⇒ val”

Define a function that transforms such an expression into an equivalent one that does
not contain Where. Prove that your transformation is correct.

fun inline :: “wexp ⇒ aexp”
value
“inline (Where (Plus (V ′′x ′′) (V ′′x ′′)) ′′x ′′ (Plus (N 1) (N 1))) =

aexp.Plus (aexp.Plus (aexp.N 1) (aexp.N 1)) (aexp.Plus (aexp.N 1) (aexp.N 1))”

lemma val inline: “aval (inline e) st = wval e st”

Define a function that eliminates occurrences of Where e1 x e2 that are never used,
i.e., where x does not occur free in e1. An occurrence of a variable in an expression is
called free if it is not in the body of a Where expression that binds the same variable.
For example, the variable x occurs free in wexp.Plus (wexp.V x) (wexp.V x), but not in
Where (wexp.Plus (wexp.V x) (wexp.V x)) x (wexp.N 0). Prove the correctness of your
transformation.

fun elim :: “wexp ⇒ wexp”
lemma “wval (elim e) st = wval e st”

Hints:

• When different datatypes have a constructor with the same name, they can unam-
biguously be referred to using their qualified name, e.g., aexp.Plus vs. wexp.Plus.

• When you feel that the proof should be trivial to finish, you can also try the
sledgehammer command. It invokes an extensive proof search that includes
more library lemmas.

4

