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Exercise 6.1 Program Equivalence

Let Or be the disjunction of two bexps:

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1 ) (Not b2 ))”

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 6.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Prove: (IF b THEN c1 ELSE c2 ) ∼ ((ASSUME b; c1 ) OR (ASSUME (Not b);
c2 ))

Note: It is easiest if you take the existing theories and modify them.
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General homework instructions

• All proofs in the homework must be carried out in Isar style.

• You can upload multiple files in the submission interface.

Homework 6.1 Index

Submission until Tuesday, November 28, 10:00am.

Define a function index of that finds the index of an element in a list:

fun index of :: “ ′a ⇒ ′a list ⇒ nat option”

index of should return Some i if the element occurs at the i -th position in the list and
None otherwise.

Prove the following property:

lemma index of prefix :
“index of x xs = Some i =⇒ ∃ ys zs. xs = ys @ x # zs ∧ length ys = i”

Homework 6.2 Fuel your executions

Submission until Tuesday, November 28, 10:00am.

If you try to define a function to execute a program, you will run into trouble with the
termination proof (the program might not terminate).

In this exercise, you will define an execution function that tries to execute the program
for a bounded number of loop iterations. It gets an additional nat argument, called fuel,
which decreases for every loop iteration. If the execution runs out of fuel, it stops and
returns None.

Ultimately, we want to show that some classes of programs (that do not contain WHILE )
can always be executed to Some.

Before working on this exercise, read the entire text carefully. Use the tem-
plate that is provided on the webpage, so you don’t have to copy definitions
from the sheet.

Step 1 Define the remaining clauses of the exec function:

fun exec :: “com ⇒ state ⇒ nat ⇒ state option” where
“exec s 0 = None”
| “exec SKIP s f = Some s”
| “exec (x ::=v) s f = Some (s(x :=aval v s))”
| “exec (c1 ;;c2 ) s f = (
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case exec c1 s f of
None ⇒ None
| Some s ′⇒ exec c2 s ′ f )”

Your definition should be equivalent to the big-step semantics, i.e.:

theorem exec equiv bigstep: “ (∃ f . exec c s f = Some s ′) ←→ (c,s) ⇒ s ′”

Step 2 (optional, 5 bonus points) Prove the equivalence property. You can find
hints in the template.

lemma exec imp bigstep: “exec c s f = Some s ′ =⇒ (c,s) ⇒ s ′”
lemma bigstep imp exec: “ (c,s) ⇒ s ′ =⇒ ∃ k . exec c s k = Some s ′”

Step 3 Define a function that returns True if a com is While-free, i.e. contains no
WHILE :

fun while free :: “com ⇒ bool”

Step 4 Prove that for any while-free program c, there is always a fuel f such that exec
c s f 6= None.

Hint: Construct a small while-free program and try to execute it with exec, using various
values for fuel.

lemma while free fuel : “while free c =⇒ ∃ f . exec c s f 6= None”

Homework 6.3 Resource management

Submission until Tuesday, November 28, 10:00am.

Frequently, programs need to allocate resources and clean them up afterwards, even in
case of exceptions. Extend IMP with such constructs:

• THROW indicates that there is an error

• ATTEMPT c1 CLEANUP c2 executes c1 until and exception is thrown and always
executes c2.

The detailed semantics of these constructs are as follows.

Command THROW throws an exception. The only command that can catch an excep-
tion is ATTEMPT c1 CLEANUP c2: if an exception is thrown by c1, execution stops
there and continues with c2. If no exception is thrown, c2 is also executed. An exception
being thrown during c2 aborts execution of c2 and propagates “upwards” to the next
ATTEMPT block.
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Similarly to the small-step semantics, the big-step semantics is now of type com × state
⇒ com × state. In a big step (c,s) ⇒ (x ,t), x is THROW if an exception has been
thrown, otherwise it is SKIP.

Solve this exercise in a separate file that does not import Big Step. Otherwise
you will get plenty of ambiguity errors. If necessary, copy existing types and
definitions and adapt them in that file.

Step 1 Define the modified big-step semantics.

inductive big step :: “com × state ⇒ com × state ⇒ bool” (infix “⇒” 55 )

Step 2 Adapt the previous auxiliary setup from the BigStep theory, including rule
inversion.

Hint: Don’t forget to declare the introduction & induction rules:

lemmas big step induct = big step.induct [split format(complete)]
declare big step.intros[intro]

Step 3 Prove that op ⇒ always produces SKIP or THROW.

lemma big step result : “ (c,s) ⇒ (c ′,s ′) =⇒ (c ′ = SKIP ∨ c ′ = THROW )”

Step 4 The small-step semantics can also be adjusted. It has the same type as before,
but instead of having only SKIP as the final command, we can also have THROW.
Exceptions propagate upwards until an enclosing ATTEMPT is found, that is, until a
configuration (ATTEMPT THROW CLEANUP c, s) is reached.

Define the modified small-step semantics and prove that it is complete wrt to the big-step
semantics.

inductive small step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55 )
abbreviation small steps :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→∗” 55 )

where “x →∗ y == star small step x y”

declare small step.intros[simp,intro]

You may need some lemmas from the existing theories. In addition, you might need a
new lemma about x →∗ y and ATTEMPT.

lemma big to small : “cs ⇒ xt =⇒ cs →∗ xt”
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