
Technische Universität München WS 2017/18
Institut für Informatik 28.11.2017

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 7

Exercise 7.1 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma
assumes “ (WHILE b DO c, s) ⇒ t” and “ ∀ s t . (c, s) ⇒ t −→ (c ′, s) ⇒ t”
shows “ (WHILE b DO c ′, s) ⇒ t”

using assms
by (induction “WHILE b DO c” s t rule: big step induct) auto

lemma “deskip c ∼ c”

Exercise 7.2 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5 ) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of comp bigstep to your modified compiler.

1



General homework instructions

• All proofs in the homework must be carried out in Isar style.

• You can upload multiple files in the submission interface.

Homework 7.1 Loop Compiler

Submission until Tuesday, December 5, 10:00am.

For this exercise we have replaced the normal WHILE loop in IMP by a new Loop c b
construct (without nice syntax). The modified type com and the big-step semantics are
given at the beginning of the template file. Your task is to define the compiler ccomp
for the new loop construct and prove the correctness theorem ccomp bigstep; both are
found at the end of the template file.

Homework 7.2 Compilation of exceptions

Submission until Tuesday, December 5, 10:00am.

In the previous homework, we extended IMP with the exception throwing and handling
constructs THROW and ATTEMPT CLEANUP . In this homework you have to
extend the command compiler ccomp to deal with these two constructs. The main idea
is simple: a THROW is compiled to a JMP to the CLEANUP code. The new ccomp
should have type nat ⇒ com ⇒ instr list. The additional nat parameter has a similar
purpose as the nat parameter of function bcomp: it tells ccomp how far beyond the end
of the generated code the code should jump in case of a THROW. If execution of the
source code terminates with SKIP, execution of the compiled code should terminate 1
step beyond end of the compiled code; if execution of the source code terminates with
THROW, execution of the compiled code should jump n+1 steps beyond the end of
compiled code.

Start from the template file. It contains both the language definition (as a big step
semantics) and an almost unchanged copy of the compiler. Go to the end of the file
and update and extend the definition of function ccomp. Check that your compiler does
the right thing for the given example and try some more examples. Finally modify the
correctness statement ccomp bigstep (for inspiration look at lemma bcomp correct) and
update the proof. If your compiler is correct, there is a good chance that you only need
to give an explicit proof for case WhileTrueSkip in that induction; the other cases should
go through automatically (with the help of the final fastforce+, which make take a bit
of time). However, depending on your compiler you may have to spell out some of the
other cases as well.

2


