Technische Universität München Institut für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel

Semantics of Programming Languages

Exercise Sheet 10

Exercise 10.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b in variable c.

definition MAX :: com where

Step 2 Prove these lemmas about max: lemma [simp]: " $(a::int) < b \implies max \ a \ b = b$ "

lemma [simp]: " \neg (a::int)<b \implies max a b = a"

Show that MAX satisfies the following Hoare triple: lemma " $\vdash \{\lambda s. True\} MAX \{\lambda s. s "c" = max (s "a") (s "b")\}$ "

Step 3 Now define a program MUL that returns the product of x and y in variable z. You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that *MUL* does the right thing. **lemma** " $\vdash \{\lambda s. \ 0 \le s \ ''y''\}$ *MUL* $\{\lambda s. \ s \ ''z'' = s \ ''x'' * s \ ''y''\}$ "

Hints:

• You may want to use the lemma *algebra_simps*, containing some useful lemmas like distributivity.

• Note that we use a backward assignment rule. This implies that the best way to do proofs is also backwards, i.e., on a semicolon c_1 ;; c_2 , you first continue the proof for c_2 , thus instantiating the intermediate assertion, and then do the proof for c_1 . However, the first premise of the *Seq*-rule is about c_1 . In an Isar proof, this is no problem. In an **apply**-style proof, the ordering matters. Hence, you may want to use the [rotated] attribute:

lemmas $Seq_bwd = Seq[rotated]$

lemmas hoare_rule[intro?] = Seq_bwd Assign Assign' If

Step 5 Note that our specifications still have a problem, as programs are allowed to overwrite arbitrary variables.

For example, regard the following (wrong) implementation of MAX:

definition "MAX_wrong = ("a"::=N 0;;"b"::=N 0;;"c"::= N 0)"

Prove that *MAX_wrong* also satisfies the specification for *MAX*:

lemma " \vdash { λs . True} MAX_wrong { λs . s "c" = max (s "a") (s "b")}"

What we really want to specify is, that MAX computes the maximum of the values of a and b in the initial state. Moreover, we may require that a and b are not changed. For this, we can use logical variables in the specification. Prove the following more accurate specification for MAX:

The specification for *MUL* has the same problem. Fix it!

Exercise 10.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form $\vdash \{P\} x ::= a \{Q\}$, where Q is some suitable postcondition. Hint: To prove this rule, use the completeness property, and prove the rule semantically.

lemmas $fwd_Assign' = weaken_post[OF fwd_Assign]$

Redo the proofs for MAX and MUL from the previous exercise, this time using your forward assignment rule.

lemma " $\vdash \{\lambda s. True\}$ MAX $\{\lambda s. s "c" = max (s "a") (s "b")\}$ " **lemma** " $\vdash \{\lambda s. 0 \le s "y"\}$ MUL $\{\lambda s. s "z" = s "x" * s "y"\}$ "

Homework 10.1 Fixed Points

Submission until Tuesday, January 9, 2018, 10:00am.

Prove the following fixed point theorem:

definition $gfp :: "('a \ set \Rightarrow 'a \ set) \Rightarrow 'a \ set"$ where " $gfp \ f = \bigcup \{P. \ P \subseteq f \ P\}$ "

lemma assumes " $\bigwedge x \ y. \ x \subseteq y \Longrightarrow f \ x \subseteq f \ y$ " **shows** "f (gfp f) = gfp f" " $\bigwedge a. \ f \ a = a \Longrightarrow a \subseteq gfp \ f$ "

The theorem proves two properties. The general way to do that is as follows:

```
lemma
assumes "P \land Q"
shows P Q
proof –
show P
using assms by simp
show Q
```

using assms by simp qed

Homework 10.2 Be Original!

Submission until Tuesday, January 9, 2018, 10:00am. (20 regular points, plus bonus points for nice submissions)

Think up a nice formalization yourself, for example

- Prove some interesting result about graph/automata/formal language theory
- Formalize some results from mathematics
- Find interesting modifications of IMP material and prove interesting properties about them

• ...

You should set yourself a time limit before starting your project. Also incomplete/unfinished formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended to do.

You are welcome to discuss your plans with the tutor before starting your project.