
Technische Universität München WS 2017/18
Institut für Informatik 19.12.2017

Prof. Tobias Nipkow, Ph.D.
Lars Hupel

Semantics of Programming Languages
Exercise Sheet 10

Exercise 10.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b
in variable c.

definition MAX :: com where

Step 2 Prove these lemmas about max :

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that MAX satisfies the following Hoare triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra simps, containing some useful lemmas like
distributivity.

1

• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated] attribute:

lemmas Seq bwd = Seq [rotated]

lemmas hoare rule[intro?] = Seq bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong = (′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::= N 0)”

Prove that MAX wrong also satisfies the specification for MAX :

lemma “` {λs. True} MAX wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 10.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form ` {P} x ::= a {Q},
where Q is some suitable postcondition. Hint: To prove this rule, use the completeness
property, and prove the rule semantically.

lemmas fwd Assign ′ = weaken post [OF fwd Assign]

Redo the proofs for MAX and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

2

Homework 10.1 Fixed Points

Submission until Tuesday, January 9, 2018, 10:00am.

Prove the following fixed point theorem:

definition gfp :: “ (′a set ⇒ ′a set) ⇒ ′a set” where
“gfp f =

⋃
{P . P ⊆ f P}”

lemma
assumes “

∧
x y . x ⊆ y =⇒ f x ⊆ f y”

shows “f (gfp f) = gfp f” “
∧
a. f a = a =⇒ a ⊆ gfp f”

The theorem proves two properties. The general way to do that is as follows:

lemma
assumes “P ∧ Q”
shows P Q

proof −
show P

using assms by simp

show Q
using assms by simp

qed

Homework 10.2 Be Original!

Submission until Tuesday, January 9, 2018, 10:00am. (20 regular points, plus bonus
points for nice submissions)

Think up a nice formalization yourself, for example

• Prove some interesting result about graph/automata/formal language theory

• Formalize some results from mathematics

• Find interesting modifications of IMP material and prove interesting properties
about them

• ...

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

You are welcome to discuss your plans with the tutor before starting your project.

3

