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Exercise 10.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b
in variable c.

definition MAX :: com where

Step 2 Prove these lemmas about max :

lemma [simp]: “ (a::int)<b =⇒ max a b = b”

lemma [simp]: “¬(a::int)<b =⇒ max a b = a”

Show that MAX satisfies the following Hoare triple:

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.

definition MUL :: com where

Step 4 Prove that MUL does the right thing.

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra simps, containing some useful lemmas like
distributivity.
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• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated ] attribute:

lemmas Seq bwd = Seq [rotated ]

lemmas hoare rule[intro? ] = Seq bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.

For example, regard the following (wrong) implementation of MAX :

definition “MAX wrong = ( ′′a ′′::=N 0 ;; ′′b ′′::=N 0 ;; ′′c ′′::= N 0 )”

Prove that MAX wrong also satisfies the specification for MAX :

lemma “` {λs. True} MAX wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that MAX computes the maximum of the values of
a and b in the initial state. Moreover, we may require that a and b are not changed.

For this, we can use logical variables in the specification. Prove the following more
accurate specification for MAX :

lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}
MAX
{λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 10.2 Forward Assignment Rule

Think up and prove a forward assignment rule, i.e., a rule of the form ` {P} x ::= a {Q},
where Q is some suitable postcondition. Hint: To prove this rule, use the completeness
property, and prove the rule semantically.

lemmas fwd Assign ′ = weaken post [OF fwd Assign]

Redo the proofs for MAX and MUL from the previous exercise, this time using your
forward assignment rule.

lemma “` {λs. True} MAX {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”
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Homework 10.1 Fixed Points

Submission until Tuesday, January 9, 2018, 10:00am.

Prove the following fixed point theorem:

definition gfp :: “ ( ′a set ⇒ ′a set) ⇒ ′a set” where
“gfp f =

⋃
{P . P ⊆ f P}”

lemma
assumes “

∧
x y . x ⊆ y =⇒ f x ⊆ f y”

shows “f (gfp f ) = gfp f” “
∧
a. f a = a =⇒ a ⊆ gfp f”

The theorem proves two properties. The general way to do that is as follows:

lemma
assumes “P ∧ Q”
shows P Q

proof −
show P

using assms by simp

show Q
using assms by simp

qed

Homework 10.2 Be Original!

Submission until Tuesday, January 9, 2018, 10:00am. (20 regular points, plus bonus
points for nice submissions)

Think up a nice formalization yourself, for example

• Prove some interesting result about graph/automata/formal language theory

• Formalize some results from mathematics

• Find interesting modifications of IMP material and prove interesting properties
about them

• ...

You should set yourself a time limit before starting your project. Also incomplete/unfinished
formalizations are welcome and will be graded!

Please comment your formalization well, such that we can see what it does/is intended
to do.

You are welcome to discuss your plans with the tutor before starting your project.
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