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Before beginning to solve the exercises, open a new theory file named Ex01.thy and add
the the following three lines at the beginning of this file.

theory Ex01

imports Main

begin

Exercise 1.1 Calculating with natural numbers

Use the value command to turn Isabelle into a fancy calculator and evaluate the fol-
lowing natural number expressions:

“2 + (2 ::nat)” “ (2 ::nat) ∗ (5 + 3 )” “ (3 ::nat) ∗ 4 − 2 ∗ (7 + 1 )”

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition
of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a
list.

fun count :: “ ′a list ⇒ ′a ⇒ nat”

Test your definition of count on some examples and prove that the results are indeed
correct.

Prove the following inequality (and additional lemmas if necessary) about the relation
between count and length, the function returning the length of a list.

theorem “count xs x ≤ length xs”
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Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function snoc that appends an
element at the right end of a list. Do not use the existing append operator @ for lists.

fun snoc :: “ ′a list ⇒ ′a ⇒ ′a list”

Convince yourself on some test cases that your definition of snoc behaves as expected,
for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function reverse that reverses the order of elements in a list. (Do not use
the existing function rev from the library.) Hint: Define the reverse of x # xs using the
snoc function.

fun reverse :: “ ′a list ⇒ ′a list”

Demonstrate that your definition is correct by running some test cases, and proving that
those test cases are correct. For example:

value “reverse [a, b, c]”
lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating reverse
and snoc to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1.1 More Finger Exercise with Lists

Submission until Tuesday, October 28, 10:00am.

Submission Instructions

Submissions are handled via https://competition.isabelle.systems/.

• Register an account in the system and send the tutor an e-mail with your username.

• Select the competition “Semantics 2019/20” and submit your solution following
the instructions on the website.

• The system will check that your solution can be loaded in Isabelle2019 without
any errors and reports how many of the main theorems you were able to prove.

• You can upload multiple times; the last upload before the deadline is the one that
will be graded.
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• If you have any problems uploading, or if the submission seems to be rejected for
reasons you cannot understand, please contact the tutor.

General hints:

• If you cannot prove a lemma, that you need for a subsequent proof, assume this
lemma by using sorry.

• Define the functions as simply as possible. In particular, do not try to make them
tail recursive by introducing extra accumulator parameters — this will complicate
the proofs!

• All proofs should be straightforward, and take only a few lines.

Define a function list sum that computes the sum of the elements in a list of natural
numbers:

fun list sum :: “nat list ⇒ nat”

Prove that the sum of a list is invariant under reversing the list:

theorem list sum reverse:
“list sum (reverse xs) = list sum xs”

Hint : You may need a lemma about snoc and list sum.

Define a function upto such that upto n returns the list consisting of the elements [0 ..n]:

fun upto :: “nat ⇒ nat list”

Finally, prove Gauss’ well-known theorem about the sum of the first n natural numbers:

theorem gauss:
“list sum (upto n) = n ∗ (n + 1 ) div 2”
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