
Technische Universität München WS 2019/20
Fakultät für Informatik 18.11.2019

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:

definition Or :: “bexp ⇒ bexp ⇒ bexp” where
“Or b1 b2 = Not (And (Not b1 ) (Not b2 ))”

Prove or disprove (by giving counterexamples) the following program equivalences.

1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2

2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c

3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c

4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.

2. Adapt the big step semantics to include rules for the new commands.

3. Prove that c1 OR c2 ∼ c2 OR c1.

4. Prove: (IF b THEN c1 ELSE c2 ) ∼ ((ASSUME b; c1 ) OR (ASSUME (Not b);
c2 ))

Note: It is easiest if you take the existing theories and modify them.

1



Exercise 5.3 Deskip

Define a recursive function

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma
assumes “ (WHILE b DO c, s) ⇒ t” and “ ∀ s t . (c, s) ⇒ t −→ (c ′, s) ⇒ t”

shows “ (WHILE b DO c ′, s) ⇒ t”
lemma “deskip c ∼ c”

Homework 5.1 Functional Small-Step

Submission until Monday, Nov 25, 10:00am.

Specify a functional version of the small-step semantics as function small with the fol-
lowing signature:

fun small :: “com ∗ state ⇒ (com ∗ state) option” where

Prove that it is indeed equivalent to the small-step semantics:

theorem “ (c,s) → (c ′,s ′) ←→ small (c,s) = Some (c ′,s ′)”

Now define a version of small that corresponds to →∗. That is, define a function smalls
with the following signature where the first argument gives an upper bound on the
number of execution steps:

fun smalls :: “nat ⇒ com ∗ state ⇒ (com ∗ state) option” where

Again prove that the two semantics are equivalent:

theorem smalls small steps equiv :
“ (∃ s ′. (c,s) →∗ (c ′,s ′)) ←→ (

if c ′ = SKIP then
(∃n. smalls n (c, s) = None)

else
(∃n s ′. smalls n (c, s) = Some (c ′, s ′))

)”

2



Homework 5.2 Nondeterminism

Submission until Monday, Nov 25, 10:00am.

We again consider the extension of IMP with nondeterminism from the tutorial. This
time, first extend the small-step semantics with the new constructs:

inductive
small step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55 )

where
Assign: “ (x ::= a, s) → (SKIP , s(x := aval a s))” |
Seq1 : “ (SKIP ;;c2,s) → (c2,s)” |
Seq2 : “ (c1,s) → (c1

′,s ′) =⇒ (c1;;c2,s) → (c1
′;;c2,s

′)” |
IfTrue: “bval b s =⇒ (IF b THEN c1 ELSE c2,s) → (c1,s)” |
IfFalse: “¬bval b s =⇒ (IF b THEN c1 ELSE c2,s) → (c2,s)” |
While: “ (WHILE b DO c,s) → (IF b THEN c;; WHILE b DO c ELSE SKIP ,s)” |
— Your cases here:

Then correct the proof of the equivalence theorem between big-step and small-step se-
mantics:

theorem big iff small :
“cs ⇒ t = cs →∗ (SKIP ,t)”

Does the following theorem still hold? Prove or disprove! (Will not be checked by the
submission system):

definition final where “final cs ←→ ¬(EX cs ′. cs → cs ′)”

lemma big iff small termination:
“ (∃ t . cs ⇒ t) ←→ (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)”

3


