
Technische Universität München WS 2019/20
Fakultät für Informatik 25.11.2019

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler (by modifying ccomp) which reduces the number
of instructions for programs of the form IF b THEN c.

3. Extend the proof of comp bigstep to your modified compiler.

Exercise 6.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1. Modify, in the theory HOL−IMP .Types (copy it first), the inductive definitions of
taval and tbval such that implicit coercions are applied where necessary.

2. Adapt all proofs in the theory HOL−IMP .Types accordingly.

Hint: Isabelle already provides the coercion function real of int (int ⇒ real).

1

Homework 6.1 Pairs

Submission until Monday, December 6, 10:00am.

In this exercise, we extend the expression language of IMP with pair values.

datatype val = Iv int | Pv val val

type synonym vname = string
type synonym state = “vname ⇒ val”

datatype aexp = N int | V vname | Plus aexp aexp | Pair aexp aexp

Complete the following inductive predicate for evaluating expressions:

inductive taval :: “aexp ⇒ state ⇒ val ⇒ bool” where
“taval (N i) s (Iv i)” |
“taval (V x) s (s x)” |

It should also be able to add pairs. In this case, the addition should be performed
pair-wise. This should also work for nested pairs.

For simplicity, we do not modify Boolean expressions. Less can only compare two integer
values:

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

inductive tbval :: “bexp ⇒ state ⇒ bool ⇒ bool” where
“tbval (Bc v) s v” |
“tbval b s bv =⇒ tbval (Not b) s (¬ bv)” |
“tbval b1 s bv1 =⇒ tbval b2 s bv2 =⇒ tbval (And b1 b2) s (bv1 & bv2)” |
“taval a1 s (Iv i1) =⇒ taval a2 s (Iv i2) =⇒ tbval (Less a1 a2) s (i1 < i2)”

We add an assignment construct for pairs (x , y) ::== a to the command language:

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| AssignP “vname × vname” aexp (“ ::== ” [1000 , 61] 61)
| Seq com com (“ ;; ” [60 , 61] 60)
| If bexp com com (“IF THEN ELSE ” [0 , 0 , 61] 61)
| While bexp com (“WHILE DO ” [0 , 61] 61)

Adopt the small-step semantics accordingly:

inductive
small step :: “ (com × state) ⇒ (com × state) ⇒ bool” (infix “→” 55)

We now also add a pair type to the typing system:

datatype ty = Ity | Pty ty ty

2

type synonym tyenv = “vname ⇒ ty”

Complete the typing rules:

inductive atyping :: “tyenv ⇒ aexp ⇒ ty ⇒ bool”
(“ (1 / `/ (:/))” [50 ,0 ,50] 50)

where
Ic ty : “Γ ` N i : Ity” |
V ty : “Γ ` V x : Γ x” |

inductive btyping :: “tyenv ⇒ bexp ⇒ bool” (infix “`” 50)
where
B ty : “Γ ` Bc v” |
Not ty : “Γ ` b =⇒ Γ ` Not b” |
And ty : “Γ ` b1 =⇒ Γ ` b2 =⇒ Γ ` And b1 b2” |

inductive ctyping :: “tyenv ⇒ com ⇒ bool” (infix “`” 50) where
Skip ty : “Γ ` SKIP” |
Assign ty : “Γ ` a : Γ(x) =⇒ Γ ` x ::= a” |
Seq ty : “Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` c1 ;;c2” |
If ty : “Γ ` b =⇒ Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` IF b THEN c1 ELSE c2” |
While ty : “Γ ` b =⇒ Γ ` c =⇒ Γ ` WHILE b DO c” |

This function determines the type of a value:

fun type :: “val ⇒ ty” where
“type (Iv i) = Ity” |
“type (Pv v1 v2) = Pty (type v1) (type v2)”

lemma type eq Ity [simp]: “type v = Ity ←→ (∃ i . v = Iv i)”
by (cases v) simp all

Hint: You will also need a similar lemma for Pty t1 t2.

definition styping :: “tyenv ⇒ state ⇒ bool” (infix “`” 50)
where “Γ ` s ←→ (∀ x . type (s x) = Γ x)”

Complete the proofs of preservation and progress:

lemma apreservation:
“Γ ` a : τ =⇒ taval a s v =⇒ Γ ` s =⇒ type v = τ”

lemma aprogress: “Γ ` a : τ =⇒ Γ ` s =⇒ ∃ v . taval a s v”
lemma bprogress: “Γ ` b =⇒ Γ ` s =⇒ ∃ v . tbval b s v”
theorem progress:
“Γ ` c =⇒ Γ ` s =⇒ c 6= SKIP =⇒ ∃ cs ′. (c,s) → cs ′”

theorem styping preservation:
“ (c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ Γ ` s ′”

theorem ctyping preservation:
“ (c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` c ′”

abbreviation small steps :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→∗” 55)

3

where “x →∗ y == star small step x y”

Finally, we can recover the proof of type-soundness:

theorem type sound :
“ (c,s) →∗ (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ c ′ 6= SKIP
=⇒ ∃ cs ′′. (c ′,s ′) → cs ′′”

apply(induction rule:star induct)
apply (metis progress)
by (metis styping preservation ctyping preservation)

Homework 6.2 Continue

Submission until Monday, December 2, 10:00am.

Your task is to add a continue command to the IMP language. The continue command
should skip all remaining commands in the innermost while loop.

The new command datatype is:

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| Seq com com (“ ;;/ ” [60 , 61] 60)
| If bexp com com (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61)
| While bexp com (“ (WHILE / DO)” [0 , 61] 61)
| CONTINUE

The idea of the big-step semantics is to return not only a state, but also a continue flag,
which indicates that a continue has been triggered. Modify/augment the big-step rules
accordingly:

inductive
big step :: “com × state ⇒ bool × state ⇒ bool” (infix “⇒” 55)

Your next task is to adopt the compiler such that CONTINUE is also supported. The
now compiler will have the following signature:

fun ccomp :: “com ⇒ nat ⇒ instr list” where

The extra argument keeps track of the offset from the head of the last preceding while-
loop.

To improve automation, first prove the following lemma:

definition
“len of c = length (ccomp c 0)”

lemma length ccomp[simp]:
“length (ccomp c i) = len of c”

4

Now show that your new compiler is correct. To do so, prove the following modified
correctness lemma. The modified lemma adds an instruction prefix pre, which you can
think of as the list of instructions that separates the current instruction and the last
loop head.

Note that the original proof made us of heavy automation that is likely going to break
after making the changes from above. Use Isar to explore the proof in more detail.

lemma ccomp bigstep1 :
“ (c,s) ⇒ (f , t) =⇒ i ≤ length pre
=⇒ pre @ ccomp c i `

(length pre,s,stk) →∗ (if f then length pre − i else size(pre @ ccomp c i),t ,stk)”

Finally, re-prove the old correctness theorem:

corollary ccomp bigstep:
“ (c,s) ⇒ (False, t) =⇒ ccomp c 0 ` (0 ,s,stk) →∗ (size(ccomp c 0),t ,stk)”

5

