
Technische Universität München WS 2019/20
Fakultät für Informatik 02.12.2019

Prof. Tobias Nipkow, Ph.D.
Simon Wimmer

Semantics of Programming Languages
Exercise Sheet 07

Exercise 7.1 Available Expressions

Regard the following function AA, which computes the available assignments of a com-
mand. An available assignment is a pair of a variable and an expression such that the
variable holds the value of the expression in the current state. The function AA c A
computes the available assignments after executing command c, assuming that A is the
set of available assignments for the initial state.

Note that available assignments can be used for program optimization, by avoiding
recomputation of expressions whose value is already available in some variable.

fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where
“AA SKIP A = A” |
“AA (x ::= a) A = (if x ∈ vars a then {} else {(x , a)})
∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}” |

“AA (c1;; c2) A = (AA c2 ◦ AA c1) A” |
“AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A” |
“AA (WHILE b DO c) A = A ∩ AA c A”

Show that available assignment analysis is a gen/kill analysis, i.e., define two functions
gen and kill such that

AA c A = (A ∪ gen c) − kill c.

Note that the above characterization differs from the one that you have seen on the
slides, which is (A − kill c) ∪ gen c. However, the same properties (monotonicity, etc.)
can be derived using either version.

fun gen :: “com ⇒ (vname × aexp) set”
and kill :: “com ⇒ (vname × aexp) set”
lemma AA gen kill : “AA c A = (A ∪ gen c) − kill c”

Hint: Defining gen and kill functions for available assignments will require mutual recur-
sion, i.e., gen must make recursive calls to kill, and kill must also make recursive calls
to gen. The and-syntax in the function declaration allows you to define both functions
simultaneously with mutual recursion. After the where keyword, list all the equations
for both functions, separated by | as usual.

Now show that the analysis is sound:

1

theorem AA sound :
“ (c, s) ⇒ s ′ =⇒ ∀ (x , a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through.

Exercise 7.2 Security type system: bottom-up with subsumption

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

1. Define a bottom-up security type system for information flow control with sub-
sumption rule (see below, add the subsumption rule).

2. Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

inductive sec type2 ′ :: “com ⇒ level ⇒ bool” (“ (` ′ :)” [0 ,0] 50) where
Skip2 ′: “` ′ SKIP : l” |
Assign2 ′: “sec x ≥ sec a =⇒ ` ′ x ::= a : sec x” |
Semi2 ′: “ [[` ′ c1 : l ; ` ′ c2 : l]] =⇒ ` ′ c1 ;; c2 : l” |
If2 ′: “ [[sec b ≤ l ; ` ′ c1 : l ; ` ′ c2 : l]] =⇒ ` ′ IF b THEN c1 ELSE c2 : l” |
While2 ′: “ [[sec b ≤ l ; ` ′ c : l]] =⇒ ` ′ WHILE b DO c : l”

Homework 7.1 Security Typing

Submission until Monday, Dec 9, 10:00am.

In this homework, you should define a function that erases confidential (“private”) parts
of a command:

fun erase :: “level ⇒ com ⇒ com” where

Function erase l should replace all assignments to variables with security level ≥ l by
SKIP. It should also erase certain IF s and WHILE s, depending on the security level of
the Boolean condition. Now show that c and erase l c behave the same on the variables
up to level l :

theorem erase correct :
“ [[(c,s) ⇒ s ′; (erase l c,t) ⇒ t ′; 0 ` c; s = t (< l)]]
=⇒ s ′ = t ′ (< l)”

This lemma looks remarkably like the noninterference lemma in HOL−IMP .Sec Typing
(although ≤ has been replaced by <). You may want to start with that proof and modify

2

it where needed. A lot of local modifications will be necessary, but the structure should
remain the same. You may also need one or two simple additional lemmas (for example
. . . =⇒ aval a s1 = aval a s2), but nothing major.

In the theorem above we assumed that both (c, s) and (erase l c, t) terminate. How
about the following two properties:

lemma “ [[(c,s) ⇒ s ′; 0 ` c; s = t (< l)]]
=⇒ ∃ t ′. (erase l c,t) ⇒ t ′ ∧ s ′ = t ′ (< l)”

lemma “ [[(erase l c,s) ⇒ s ′; 0 ` c; s = t (< l)]] =⇒ ∃ t ′. (c,t) ⇒ t ′”

Give an informal justification or a counterexample for each property!

Homework 7.2 Definite Initialization

Submission until Monday, Dec 9, 10:00am.

A well-initialized command only depends on the variables that are already initialized.
That is, executability and the values of the definitely initialized variables after executing
the command only depend on the values of the already initialized variables before the
command.

Prove the following lemma, which formalizes the proposition above wrt. the standard
big-step semantics.

theorem well initialized commands:
assumes “D A c B”
assumes “s1 = s2 on A”
assumes “ (c,s1) ⇒ s1 ′”
shows “ ∃ s2 ′. (c,s2) ⇒ s2 ′ ∧ s1 ′=s2 ′ on B”

3

