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Exercise 8.1 Knaster-Tarski Fixed Point Theorem

The Knaster-Tarski theorem tells us that for each set P of fixed points of a monotone
function f we have a fixpoint of f which is a greatest lower bound of P . In this exercise,
we want to prove the Knaster-Tarski theorem.

First we give a construction of the greatest lower bound of all fixed points P of the
function f. This is the union of all sets u smaller than P and f u. Then the task is to
show that this is a fixed point, and that it is the greatest lower bound of all sets in P.

Let us define Inf fixp:

definition Inf fixp :: “ ( ′a set ⇒ ′a set) ⇒ ′a set set ⇒ ′a set” where
“Inf fixp f P =

⋃
{u. u ⊆

⋂
P ∩ f u }”

To work directly with this definition is a little cumbersome, we propose to use the
following two theorems:

lemma Inf fixp upperbound : “X ⊆
⋂

P =⇒ X ⊆ f X =⇒ X ⊆ Inf fixp f P”
by (auto simp: Inf fixp def )

lemma Inf fixp least : “ (
∧

u. u ⊆
⋂

P =⇒ u ⊆ f u =⇒ u ⊆ X ) =⇒ Inf fixp f P ⊆ X”
by (auto simp: Inf fixp def )

Now prove, that Inf fixp is acually a fixed point of f.

Hint: First prove Inf fixp f P ⊆ f (Inf fixp f P), this will be used for the other direction.
It may be helpful to first think about the structure of your proof using pen-and-paper
and then translate it into Isar.

lemma Inf fixp:
assumes f : “mono f”
assumes P : “

∧
p. p ∈ P =⇒ f p = p”

shows “Inf fixp f P = f (Inf fixp f P)”

Now we prove that it is a lower bound:

lemma Inf fixp lower : “Inf fixp f P ⊆
⋂

P”

And that it is the greatest lower bound:

lemma Inf fixp greatest :
assumes “f q = q” “q ⊆

⋂
P” shows “q ⊆ Inf fixp f P”
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Exercise 8.2 Denotational Semantics

Define a denotational semantics for REPEAT-loops, and show its equivalence to the
bigstep semantics.

Use the exercise template that we provide on the course web page.
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Homework 8.1 Idempotence of Dead Varibale Elimination

Submission until Monday, Dec 16, 10:00am.

Dead variable elimination (bury) is not idempotent: multiple passes may reduce a com-
mand further and further. Give an example where bury (bury c X ) X 6= bury c X. Hint:
a sequence of two assignments.

Now define the textually identical function bury in the context of true liveness analysis
(theory HOL−IMP .Live True).

fun bury :: “com ⇒ vname set ⇒ com” where
“bury SKIP X = SKIP” |
“bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)” |
“bury (c1;; c2) X = (bury c1 (L c2 X );; bury c2 X )” |
“bury (IF b THEN c1 ELSE c2) X = IF b THEN bury c1 X ELSE bury c2 X” |
“bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X )”

The aim of this homework is to prove that this version of bury is idempotent. This will
involve reasoning about lfp. In particular we will need that lfp is the least pre-fixpoint.
This is expressed by two lemmas from the library:

lfp unfold : mono f =⇒ lfp f = f (lfp f )
lfp lowerbound : f A ≤ A =⇒ lfp f ≤ A

Prove the following lemma for showing that two fixpoints are the same, where mono def :
mono f = (∀ x y . x ≤ y −→ f x ≤ f y).

lemma lfp eq : “ [[ mono f ; mono g ; lfp f ⊆ U ; lfp g ⊆ U ;∧
X . X ⊆ U =⇒ f X = g X ]] =⇒ lfp f = lfp g”

It says that if we have an upper bound U for the lfp of both f and g, and f and g behave
the same below U, then they have the same lfp.

The following two tweaks improve proof automation:

lemmas [simp] = L.simps(5 )
lemmas L mono2 = L mono[unfolded mono def ]

To show that bury is idempotent we need a lemma:

lemma L bury [simp]: “X ⊆ Y =⇒ L (bury c Y ) X = L c X”
proof(induction c arbitrary : X Y )

The proof is straightforward except for the case WHILE b DO c. The definition of L
in this case means that we have to show an equality of two lfps. Lemma lfp eq comes
to the rescue. We recommend the upper bound lfp (λZ . vars b ∪ Y ∪ L c Z ). One of
the two upper bound assumptions of lemma lfp eq can be proved by showing that U is
a pre-fixpoint of f or g (see lemma lfp lowerbound).

Now we can prove idempotence of bury, again by induction on c, but this time even the
While case should be easy.

lemma bury bury : “X ⊆ Y =⇒ bury (bury c Y ) X = bury c X”
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Idempotence is a corollary:

corollary “bury (bury c X ) X = bury c X”

Homework 8.2 Denotational Semantics

Submission until Monday, Dec 16, 10:00am.

We again consider the extension of IMP with non-determinism from exercise sheet 5.
However, this time, we add a construct LOOP c for non-deterministic looping. The idea
is that LOOP c can non-deterministically decide to either stop iteration and do nothing
or to execute the loop body c for one more time.

datatype
com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61 ] 61 )
| Seq com com (“ ;;/ ” [60 , 61 ] 60 )
| If bexp com com (“ (IF / THEN / ELSE )” [0 , 0 , 61 ] 61 )
| While bexp com (“ (WHILE / DO )” [0 , 61 ] 61 )
| Or com com (“ OR ” [57 ,58 ] 59 )
| ASSUME bexp
| Loop com (“ (LOOP )” [61 ] 61 )

First extend the big-step semantics with this new construct:

inductive
big step :: “com × state ⇒ state ⇒ bool” (infix “⇒” 55 )

where
Skip: “ (SKIP ,s) ⇒ s” |
Assign: “ (x ::= a,s) ⇒ s(x := aval a s)” |
Seq : “ [[ (c1,s1) ⇒ s2; (c2,s2) ⇒ s3 ]] =⇒ (c1;;c2, s1) ⇒ s3” |
IfTrue: “ [[ bval b s; (c1,s) ⇒ t ]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
IfFalse: “ [[ ¬bval b s; (c2,s) ⇒ t ]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t” |
WhileFalse: “¬bval b s =⇒ (WHILE b DO c,s) ⇒ s” |
WhileTrue: “ [[ bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3 ]] =⇒ (WHILE b DO c, s1)
⇒ s3” |
OrLeft : “ [[ (c1,s) ⇒ s ′ ]] =⇒ (c1 OR c2,s) ⇒ s ′” |
OrRight : “ [[ (c2,s) ⇒ s ′ ]] =⇒ (c1 OR c2,s) ⇒ s ′” |
Assume: “bval b s =⇒ (ASSUME b, s) ⇒ s” |
— Your cases here:

Now, give a denotational semantics for this language:

type synonym com den = “ (state × state) set”

fun D :: “com ⇒ com den” where
“D SKIP = Id” |
“D (x ::= a) = {(s,t). t = s(x := aval a s)}” |
“D (c1 ;;c2 ) = D(c1 ) O D(c2 )” |
“D (IF b THEN c1 ELSE c2 )
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= {(s,t). if bval b s then (s,t) ∈ D c1 else (s,t) ∈ D c2}” |
“D (WHILE b DO c) = lfp (W (bval b) (D c))” |
— Your cases here:

Then correct the proof of the equivalence theorem between big-step and denotational
semantics:

theorem denotational is big step:
“ (s,t) ∈ D(c) = ((c,s) ⇒ t)”

Use theory HOL−IMP .Denotational as a template for the proof!
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