
Technische Universität München WS 2020/21
Fakultät für Informatik 9.11.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be imported as follows:

theory ex02 imports “HOL−IMP .AExp” “HOL−IMP .BExp” begin

Exercise 2.1 Induction

Define a function deduplicate that removes duplicate occurrences of subsequent elements
from a list.

fun deduplicate :: “ ′a list ⇒ ′a list”

The following should evaluate to True, for instance:

value “deduplicate [1 ,1 ,2 ,3 ,2 ,2 ,1 ::nat] = [1 ,2 ,3 ,2 ,1]”

Prove that a deduplicated list has at most the length of the original list:

lemma “length (deduplicate xs) ≤ length xs”

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.

Define a function subst that performs a syntactic substitution, i.e., subst x a ′ a shall be
the expression a where every occurrence of variable x has been replaced by expression
a ′.

fun subst :: “vname ⇒ aexp ⇒ aexp ⇒ aexp”

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.

The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:

lemma subst lemma: “aval (subst x a ′ a) s = aval a (s(x := aval a ′ s))”

Note: The expression s(x := v) updates a function at point x. It is defined as:

1

f (a := b) = (λx . if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:

lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation x++, as
known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
val×state, i.e., it takes an expression and a state, and returns a value and a new state.
Define the function aval ′.

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx . 0

value “<>(x := 0)”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:

lemma aval ′ inc:
“aval ′ a <> = (v , s ′) =⇒ 0 ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split : if splits prod .splits).

Exercise 2.4 Variables of Expression (Time Permitting)

Define a function that returns the set of variables occurring in an arithmetic expression.

fun vars :: “aexp ⇒ vname set” where

2

Show that arithmetic expressions do not depend on variables that they don’t contain.

lemma ndep: “x /∈ vars e =⇒ aval e (s(x :=v)) = aval e s”

Homework 2.1 Tail-Recursive Form of Addition

Submission until Sunday, Nov 15, 23:59.

A function is called tail-recursive if for all function equations, the recursive call is the
last computation performed. Tail-recursive functions are often preferred in software as
they don’t require a new stack frame for each call, making them easier to handle.

In this exercise, define a tail-recursive version of the add function.

fun add :: “nat ⇒ nat ⇒ nat”

Next, prove that add is associative. Hint: The proof will require at least one additional
lemma. Also remember that some proofs by induction may require generalization with
arbitrary.

theorem add assoc: “add (add x y) z = add x (add y z)”

Finally, you must prove that add is commutative. This may require more lemmas in
addition to those used for the associativity proof.

theorem add commut : “add x y = add y x”

Homework 2.2 Where expressions

Submission until Sunday, Nov 15, 23:59.

Do not forget to hand in your homework in the submission system! Note that the per-
centage displayed in the system is just a very rough indication of the score you will get
and need not correspond to the actual score you will receive during grading.

We modify the aexp datatype by adding a syntactic where construct to arithmetic ex-
pressions:

datatype wexp = N val | V vname | Plus wexp wexp | Where wexp vname wexp

The new Where constructor acts like in mathematical texts, where variables are defined
after they are used. For example, the sentence “compute f(n) where n = g(x)” ultimately
means “compute f(g(x))”. Applied to our arithmetic expressions, this means evaluating
Where f n g requires evaluating g, then assigning the result to the variable name n, and
finally evaluating f under this new state.

We modify the evaluation function aval to accommodate for the new construct Where:

fun wval :: “wexp ⇒ state ⇒ val”

3

Define a function that transforms such an expression into an equivalent one that does not
contain Where. Prove that your transformation is correct. Hint: Re-use the imported
tutorial material!

fun inline :: “wexp ⇒ aexp”
value
“inline (Where (Plus (V ′′x ′′) (V ′′x ′′)) ′′x ′′ (Plus (N 1) (N 1))) =

aexp.Plus (aexp.Plus (aexp.N 1) (aexp.N 1)) (aexp.Plus (aexp.N 1) (aexp.N 1))”

theorem val inline: “aval (inline e) s = wval e s”

Define a function that eliminates occurrences of Where e1 x e2 that are never used,
i.e., where x does not occur free in e1. An occurrence of a variable in an expression is
called free if it is not in the body of a Where expression that binds the same variable.
For example, the variable x occurs free in wexp.Plus (wexp.V x) (wexp.V x), but not in
Where (wexp.Plus (wexp.V x) (wexp.V x)) x (wexp.N 0). Prove the correctness of your
transformation.

fun elim :: “wexp ⇒ wexp”
theorem wval elim: “wval (elim e) s = wval e s”

General Hints:

• When different datatypes have a constructor with the same name, they can unam-
biguously be referred to using their qualified name, e.g., aexp.Plus vs. wexp.Plus.

• When you feel that the proof should be trivial to finish, you can also try the
sledgehammer command. It invokes an extensive proof search that includes
more library lemmas.

4

