
Technische Universität München WS 2020/21
Fakultät für Informatik 7.12.2020

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler ccomp2 which reduces the number of instructions
for programs of the form IF b THEN c. Try to finish ccomp2 without looking up
ccomp!

3. Extend the proof of comp bigstep to your modified compiler.

value “ccomp (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

fun ccomp2 :: “com ⇒ instr list” where
“ccomp2 SKIP = []” |
“ccomp2 (x ::= a) = acomp a @ [STORE x]” |
“ccomp2 (c1;;c2) = ccomp2 c1 @ ccomp2 c2” |
“ccomp2 (WHILE b DO c) =

(let cc = ccomp2 c; cb = bcomp b False (size cc + 1)
in cb @ cc @ [JMP (−(size cb + size cc + 1))])” |

value “ccomp2 (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

lemma ccomp bigstep:
“ (c,s) ⇒ t =⇒ ccomp2 c ` (0 ,s,stk) →∗ (size(ccomp2 c),t ,stk)”

Exercise 6.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.

1

1. Modify, in the theory HOL−IMP .Types (copy it first), the inductive definitions of
taval and tbval such that implicit coercions are applied where necessary.

2. Adapt all proofs in the theory HOL−IMP .Types accordingly.

Hint: Isabelle already provides the coercion function real of int (int ⇒ real).

Homework 6.1 Absolute Adressing

Submission until Sunday, Dec 13, 23:59.

The current instruction set uses relative addressing, i.e., the jump-instructions contain
an offset that is added to the program counter. An alternative is absolute addressing,
where jump-instructions contain the absolute address of the jump target.

Write a semantics that interprets the 3 types of jump instructions with absolute ad-
dresses.

fun iexec abs :: “instr ⇒ config ⇒ config”

definition exec1 abs :: “instr list ⇒ config ⇒ config ⇒ bool”
(“ (/ `a (→/))” [59 ,0 ,59] 60)

lemma exec1 absI [intro]:
“ [[c ′ = iexec abs (P !!i) (i ,s,stk); 0 ≤ i ; i < size P]] =⇒ P `a (i ,s,stk) → c ′”

abbreviation exec abs :: “instr list ⇒ config ⇒ config ⇒ bool”
(“ (/ `a (→∗/))” 50)

Now write a function that converts a program from absolute to relative addressing:

cnv to rel :: instr list ⇒ instr list

Finally show that the semantics match wrt. your conversion. Hints:

• First write a function that converts each instruction, depending on its address.
Then use the function index map, that is defined below, to convert a program.

• Prove the theorem for a single step first.

fun index map :: “ (int ⇒ ′a ⇒ ′a) ⇒ int ⇒ ′a list ⇒ ′a list” where
“index map f i [] = []”
| “index map f i (x#xs) = f i x # index map f (i+1) xs”

Start with proving the following basic facts about index map, which may be helpful for
your main proof!

2

lemma index map len[simp]: “size (index map f i l) = size l”
lemma index map idx [simp]: “ [[0 ≤ i ; i < size l]] =⇒ index map f k l !! i = f (i + k) (l !!
i)”

theorem cnv correct : “P `a c →∗ c ′←→ cnv to rel P ` c →∗ c ′”

Homework 6.2 Algebra of Commands

Submission until Sunday, Dec 13, 23:59.

We define an extension of the language with parallel composition (‖).
datatype

com = SKIP
| Assign vname aexp (“ ::= ” [1000 , 61] 61)
| Seq com com (“ ;/ ” [60 , 61] 60)
| If bexp com com (“ (IF / THEN / ELSE)” [0 , 0 , 61] 61)
| While bexp com (“ (WHILE / DO)” [0 , 61] 61)
| Par com com (infix “ ‖” 59)

inductive
small step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55) where

— sequential part as before
ParL: “ (c1 ,s) → (c1 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ′ ‖ c2 ,s ′)” |
ParLSkip: “ (SKIP ‖ c,s) → (c,s)” |
ParR: “ (c2 ,s) → (c2 ′,s ′) =⇒ (c1 ‖ c2 ,s) → (c1 ‖ c2 ′,s ′)” |
ParRSkip: “ (c ‖ SKIP ,s) → (c,s)”

Your task will be to prove various algebraic laws for the small-step equivalence. For
that, we define the nsteps relation. Custom induction rules for small step and nsteps
are provided below.

lemmas small step induct = small step.induct [split format(complete)]

inductive
nsteps :: “com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool” (“ →ˆ ” [60 ,1000 ,60]999) where
zero steps[simp,intro]: “cs →ˆ0 cs” |
one step[intro]: “cs → cs ′ =⇒ cs ′→ˆn cs ′′ =⇒ cs →ˆ(Suc n) cs ′′”

lemmas nsteps induct = nsteps.induct [split format(complete)]

We consider the small-step pre-order relation �:

definition small step pre :: “com ⇒ com ⇒ bool” (infix “�” 50) where
“c � c ′ ≡ (∀ s t n. (c,s) →ˆn (SKIP , t) −→ (∃ n ′ ≥ n. (c ′, s) →ˆn ′ (SKIP , t)))”

Based on the pre-order on programs, define an equivalence relation ≈ on programs.

definition small step equiv :: “com ⇒ com ⇒ bool” (infix “≈” 50)

3

Now prove commutativity and associativity of ‖. You are free to do either automatic or
Isar proofs. In the former case, make sure to set up some proof automation first.

theorem Par commute: “c ‖ d ≈ d ‖ c”
theorem Par assoc: “ (c ‖ d) ‖ e ≈ c ‖ (d ‖ e)”

Homework 6.3 Type Inference (Bonus Exercise)

Submission until Sunday, Dec 13, 23:59. This is a bonus exercise worth 4 points.

Specifying the types of variables is annoying, in particular, as they are mostly clear from
the program anyway.

In this exercise, you shall implement and prove correct a type inference scheme. The
type inference goes through the program similar to atyping, btyping, ctyping. But instead
of only checking whether the specified types match the program, it computes matching
types.

For this purpose, we extend types by an unknown value, which means that we do not
yet know the type of that variable. If the type inference encounters a program part
that determines the type of a variable typed with unknown, it will update the type
environment accordingly. If type inference encounters a program part that does not
match the already determined typing, it fails.

type synonym ety = “ty option”
type synonym etyenv = “vname ⇒ ety”

For efficiency (and simplicity) we want a one-pass type inference, i.e., we want to visit
each part of the program only once. However, this causes a problem: Consider the
possible types for expression (x + y) + (x + 2.3). Clearly, we have that both x and y
must be reals. However, when type inference is done in a top-down fashion, it will see
x+ y first, and infer x and y to be undetermined. Only later, if it sees the second term,
it has to somehow go back and set y to be real too, although y does not occur in the
second term.

To avoid this effect, we will assume that variables that we see in expressions have already
a determined type, and let type inference fail otherwise. This means, that input variables
of the program still need to be explicitly typed.

Define the following predicates, which determine the type of an arithmetic/Boolean
expression. A type should only be returned if the types of all variables occurring in the
expression are determined.

inductive infer aty :: “etyenv ⇒ aexp ⇒ ty ⇒ bool”
inductive infer bty :: “etyenv ⇒ bexp ⇒ bool”

A type environment is an instance of an extended type environment, if the two match
on all variables with determined types:

definition is inst :: “tyenv ⇒ etyenv ⇒ bool”

4

where “is inst Γ eΓ ≡ ∀ x τ . eΓ x = Some τ −→ Γ x = τ”

Show that type inference infers a valid typing, i.e., all instances of the inferred typing
are valid:

theorem ainfer : assumes “infer aty eΓ a τ” and “is inst Γ eΓ” shows “atyping Γ a τ”
theorem binfer : assumes “infer bty eΓ b” and “is inst Γ eΓ” shows “btyping Γ b”

Next, write a predicate that extends a typing according to a command. On an assign-
ment, the type of the assigned variable is determined to have the type of the right hand
side expression. If the assigned variable is already determined to have a different type,
no typing for the program should be inferred.

On an if-statement, the inferred types for the then and else part must be combined. If
combination is not possible, because a variable is determined to have two different types
in the then and else part, no typing for the program should be inferred. This is expressed
by the following predicate:

definition combine :: “etyenv ⇒ etyenv ⇒ etyenv ⇒ bool” where
“combine eΓ1 eΓ2 eΓ ≡ eΓ = eΓ1 ++ eΓ2 ∧

(∀ x τ1 τ2. eΓ1 x = Some τ1 ∧ eΓ2 x = Some τ2 −→ τ1 = τ2)”

inductive infer cty :: “etyenv ⇒ com ⇒ etyenv ⇒ bool”

As a test, show that your type inference works for the following program

abbreviation “test c ≡
′′x ′′::=Ic 0 ;;
(IF Less (V ′′x ′′) (Ic 2) THEN SKIP ELSE ′′y ′′ ::= Rc 1 .0);;
′′y ′′ ::= Plus (V ′′y ′′) (Rc 3 .1)”

lemma “ ∃ eΓ ′. infer cty (λ . None) test c eΓ ′”

As sketched below, a safe way to prove such a lemma is to apply the introduction rules
manually. Of course, you may also try to automate this proof. Note that you probably
have to adjust the applied introduction rules to your solution!

apply (rule exI)

apply (rule infer cty .intros)
apply simp
apply (rule infer cty .intros)
apply (rule infer cty .intros)

apply simp
apply (rule infer aty .intros) — and so on ...

Finally, prove the following theorem:

theorem infer typing : assumes “infer cty eΓ c eΓ ′” and “is inst Γ eΓ ′” shows “ctyping Γ
c”

5

Hint: You will need some auxiliary lemmas. The main idea is that infer cty only de-
termines more types, but does not change already determined ones, and that if type
inference for aexp and bexp works on a type environment, it also works on a more de-
termined type environment. You may use ((⊆m), look it up using find theorems!) to
express that a type environment is less determined than another one.

Moreover, it may be advantageous to prove some auxiliary lemmas about (⊆m), is inst,
combine and the relation of these concepts, rather then proving these things in the main
proof.

6

