
Technische Universität München WS 2020/21
Fakultät für Informatik 25.01.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Complete Lattices

Which of the following ordered sets are complete lattices?

• N, the set of natural numbers {0, 1, 2, 3, . . .} with the usual order

• N∪{∞}, the set of natural numbers plus infinity, with the usual order and n <∞
for all n ∈ N.

• A finite set A with a total order ≤ on it.

Exercise 11.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.

datatype sign = Pos | Zero | Neg | Any

instantiation sign :: order
instantiation sign :: semilattice sup top
fun γ sign :: “sign ⇒ val set”
fun num sign :: “val ⇒ sign”
fun plus sign :: “sign ⇒ sign ⇒ sign”
global interpretation Val semilattice

where γ = γ sign and num ′ = num sign and plus ′ = plus sign
global interpretation Abs Int

where γ = γ sign and num ′ = num sign and plus ′ = plus sign
defines aval sign = aval ′ and step sign = step ′ and AI sign = AI

Some tests:

definition “test1 sign =
′′x ′′ ::= N 1 ;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)”

value “show acom (the(AI sign test1 sign))”

1

definition “test2 sign =
′′x ′′ ::= N 1 ;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)”

definition “steps c i = ((step sign >) ˆˆ i) (bot c)”

value “show acom (steps test2 sign 0)”

...

value “show acom (steps test2 sign 6)”
value “show acom (the(AI sign test2 sign))”

Exercise 11.3 AI for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure
out, that after executing the program x :=2 ; IF x<2 THEN x :=2 ELSE x :=1, x will be
constant.

In this exercise, we extend our abstract interpreter with a simple analysis of boolean
expressions. To this end, modify locale Val semilattice in theory Abs Int0 .thy as follows:

• Introduce an abstract domain ′bv for boolean values, add, analogously to num ′

and plus ′ also functions for the boolean operations and for less.

• Modify Abs Int0 to accommodate for your changes.

Homework 11.1 Lattice Theory

Submission until Sunday, Jan 31, 23:59.

General Submission Instructions

Note that due to the use of instantiations, submissions for this homework will fail on the
submission system (with an ”illegal keyword” error).

Please make sure that your submission runs locally in a reasonable amount of time, and
ignore the error message.

A type ′a is a t-semilattice if it is a partial order and there is a supremum operation t
of type ′a ⇒ ′a ⇒ ′a that returns the least upper bound of its arguments:

• Upper bound: x ≤ x t y and y ≤ x t y

• Least: x ≤ z ∧ y ≤ z −→ x t y ≤ z

2

Is every finite t-semilattice with a bottom element ⊥ also a complete lattice? Proof or
counterexample!

You might be asked to do a proof like this in the exam, on pen and paper. Do a pen
and paper version first, then formalize it in Isabelle. If you get stuck, write down the
rest of your informal version as comment.

Hints:

• to apply the t operation to a set, you can use the set sup relation

• you may use (and then need to prove) the sup pres p lemma

• for finite sets, there is also the finite induct induction scheme

context order
begin
abbreviation “lower S l ≡ ∀ s∈S . l ≤ s”
abbreviation “greatest S l ≡ ∀ l ′. (lower S l ′ −→ l ′ ≤ l)”
end

Complete lattice, as stated in the lecture:

class complete lattice = order +
assumes “

∧
S :: ′a set . ∃ l . (lower S l ∧ greatest S l)”

Finite semilattice with t and ⊥:

class finite semilattice sup bot = semilattice sup + order bot + finite
begin

t on sets (as predicate), with initial element b.

inductive set sup :: “ ′a ⇒ ′a set ⇒ ′a ⇒ bool” (“
⊔

/ / := /” [59 , 59 , 59]) for b where
empty [intro]: “

⊔
b {} := b”

| insert [intro]: “
⊔

b A := y =⇒
⊔

b (insert x A) := (x t y)”

theorem sup pres p:
assumes sup: “

⊔
b A := y”

assumes pres: “
∧

x y . P x =⇒ P y =⇒ P (x t y)”
shows “ ∀ x ∈ A. P x =⇒ P b =⇒ P y”

Case proof:

theorem complete lattice prf : “class.complete lattice (≤) (<)”
proof
end

Case counterexample:

Put in your type here

datatype cex a = TODO

3

instantiation cex a :: finite semilattice sup bot
begin

definition less eq cex a :: “cex a ⇒ cex a ⇒ bool” where
“less eq cex a = True”

definition less cex a :: “cex a ⇒ cex a ⇒ bool” where
“less cex a = False”

definition bot cex a :: “cex a” where
“bot cex a = TODO”

definition sup cex a :: “cex a ⇒ cex a ⇒ cex a” where
“sup cex a = TODO”

instance sorry

lemma complete lattice cex : “¬class.complete lattice (≤) (<)”
proof −

have “ ∃S . @ l . (lower S l ∧ greatest S l)”

end

Finally, add the name of the lemma you proved below:

lemmas prf or cex =

Homework 11.2 AI for the Extended Reals

Submission until Sunday, Jan 31, 23:59. For this exercise, we will consider a modified
variant of IMP that computes on real numbers extended with − ∞ and ∞. The cor-
responding type is ereal. We will consider “− ∞ + ∞” and “∞ + (− ∞)” erroneous
computations. We propagate errors by using the option type, i.e. we set val = ereal
option. Your task is now to design an abstract interpreter on the domain consisting of
subsets of {∞−, ∞+, NaN , Real} where NaN signals a computation error and all other
values have their obvious meaning. The definitions (up to abstract interpretation) have
been already adapted in the template Defs.

First adopt the abstract interpretation to accommodate for the changed semantics, and
then instantiate the abstract interpreter with your analysis.

Hints: To benefit from proof automation it can be helpful to slightly change the format of
the rules for addition in Val semilattice. For instance, you could reformulate gamma plus ′

as: i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i = i1 + i2 =⇒ i ∈ γ(plus ′ a1 a2). (You will need
to change the interface Val semilattice).

You can start the formalization of the AI like this:

datatype bound = NegInf (“∞−”) | PosInf (“∞+”) | NaN | Real

4

datatype bounds = S “bound set”

instantiation bounds :: order
begin

definition less eq bounds where
“x ≤ y = (case (x , y) of (S x , S y) ⇒ x ⊆ y)”

definition less bounds where
“x < y = (case (x , y) of (S x , S y) ⇒ x ⊂ y)”

instance
end

For the AI, interpret Abs Int, Abs Int mono, and Abs Int measure:

instantiation bounds :: semilattice sup top
begin

definition sup bounds
definition top bounds
instance
end

fun γ bounds :: “bounds ⇒ val set”
definition num bounds :: “ereal ⇒ bounds”
fun plus bounds :: “bounds ⇒ bounds ⇒ bounds”

global interpretation Val semilattice
where γ = γ bounds and num ′ = num bounds and plus ′ = plus bounds
global interpretation Abs Int
where γ = γ bounds and num ′ = num bounds and plus ′ = plus bounds
defines aval bounds = aval ′ and step bounds = step ′ and AI bounds = AI

global interpretation Abs Int mono
where γ = γ bounds and num ′ = num bounds and plus ′ = plus bounds

fun m bounds :: “bounds ⇒ nat”
abbreviation h bounds :: nat

global interpretation Abs Int measure
where γ = γ bounds and num ′ = num bounds and plus ′ = plus bounds
and m = m bounds and h = h bounds

5

