Semantics of Programming Lectures

Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type $R::{ }^{\prime} s \Rightarrow$'s bool.
Intuitively, $R s t$ represents a single step from state s to state t.
The reflexive, transitive closure R^{*} of R is the relation that contains a step $R^{*} s t$, iff R can step from s to t in any number of steps (including zero steps).
Formalize the reflexive transitive closure as an inductive predicate:
inductive star :: "(' $a \Rightarrow^{\prime} a \Rightarrow$ bool $) \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool" for r
When doing so, you have the choice to append or prepend a step. In any case, the following two lemmas should hold for your definition:

```
lemma star_prepend: " \(\llbracket\) r \(x y\); star \(r y z \rrbracket \Longrightarrow\) star \(r x z "\)
lemma star_append:"【 star rxy;ryz】 \(\begin{aligned} & \text { star } r x z " ~\end{aligned}\)
```

Now, formalize the star predicate again, this time the other way round (append if you prepended the step before or vice versa):
inductive star' $::$ " $\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow b o o l\right) \Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow$ bool" for r
Prove the equivalence of your two formalizations:
lemma"star r $x y=\operatorname{star}^{\prime} r x y "$

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few values - e.g., executing an $A D D$ instruction on an stack of size less than two. A wellformed sequence of instructions (e.g., one generated by comp) should never cause a stack underflow.

In this exercise, you will define a semantics for the stack-machine that throws an exception if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None indicating a stack-underflow.
fun exec 1 ::"instr \Rightarrow state \Rightarrow stack \Rightarrow stack option"
fun exec :: "instr list \Rightarrow state \Rightarrow stack \Rightarrow stack option"
Now adjust the proof of theorem exec_comp to show that programs output by the compiler never underflow the stack:
theorem exec_comp: "exec (comp a) s stk $=$ Some (aval as \# stk)"

Exercise 3.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisymmetric and T is a subset of A. Show with a structured, Isar-style proof that then A is also a subset of T (without proof methods more powerful than simp!):

```
lemma
    assumes total: "\forall x y.T x y\veeT y x"
        and anti:"}xy.Axy\wedgeAyx\longrightarrowx=y
        and subset:" }\forallxy.Txy\longrightarrowAxy
    shows "A x y T x y"
```


Homework 3.1 Grammars for Parenthesis Languages

Submission until Sunday, November 14, 23:59pm.
In this homework, we will use inductive predicates to specify grammars for languages consisting of words of opening and closing parentheses. We model parentheses as follows:
datatype paren $=$ Open \mid Close
We define the language of words with balanced parentheses:

$$
S \longrightarrow \varepsilon|S S|(S)
$$

as an inductive predicate with the following cases:
S []
$\llbracket S x s ; S y s \rrbracket \Longrightarrow S(x s @ y s)$
$S x s \Longrightarrow S($ Open \# xs @ [Close $])$
Show that words of the language contain the same amount of opening and closing parentheses:
theorem S_count: "S xs \Longrightarrow count $x s$ Open $=$ count $x s$ Close"

Now consider the language that is defined by the following variation of the grammar:

$$
T \longrightarrow \varepsilon|T T|(T) \mid(T
$$

inductive T :: "paren list \Rightarrow bool"

- Define T as a inductive predicate in Isabelle (the example should be easily provable by your introduction rules)
- Show that the language produced by T is at least as large as the one produced by S :
lemma example: "T [Open, Open]"
theorem S_T: "S $x s \Longrightarrow T x s$ "

Show that the converse also holds under the condition that the word contains the same amount of opening and closing parentheses:
theorem T_S: " T xs \Longrightarrow count xs Open $=$ count $x s$ Close $\Longrightarrow S$ xs"

This reuses the count function known from sheet 1. Hint: You will need a lemma connecting the number of opening and closing parentheses in words produced by T.

Homework 3.2 Compilation to Register Machine

Submission until Sunday, November 14, 23:59pm.
In this exercise, you will define a compilation function from arithmetic expressions to register machines and prove that the compilation is correct.

The registers in our simple register machines are natural numbers. These are the available instructions:
datatype instr $=L D$ reg vname $\mid A D D$ reg op op
$L D$ loads a variable value in a register. $A D D$ adds the contents of the two operands, placing the result in the register.
An operand is either a register or a constant:
datatype $o p=R E G$ reg $\mid V A L$ val
Recall that a variable state is a function from variable names to integers. Our machine state mstate contains both, variables and registers. For technical reasons, we encode it into a single function $v _o r _r e g \Rightarrow$ int:
datatype $v _o r _r e g=$ Var vname \mid Reg reg
Note: To access a variable value, we can write σ ($\operatorname{Var} x$), to access a register, we can write $\sigma($ Reg $x)$.

To extract the variable state from a machine state σ, we can use $\sigma \circ$ Var, where o is function composition.

Complete the following definition of the function for executing instructions on a machine state σ
fun op_val :: "op \Rightarrow mstate \Rightarrow int"
fun exec 1 :: "instr \Rightarrow mstate \Rightarrow mstate"
fun exec :: "instr list \Rightarrow mstate \Rightarrow mstate"
We are finally ready for the compilation function. Your task is to define a function cmp that takes an arithmetic expression a and a register r and produces a list of registermachine instructions leading to this value.
fun $c m p::$ "aexp \Rightarrow reg \Rightarrow instr list"
Your program should need no more $A D D$ instructions than there are Plus operations in the program, except if the expression is a single N.
Prove that property!
theorem $c m p _l e n: " \neg i s _N a \Longrightarrow n u m _a d d(c m p a r) \leq n u m _p l u s a "$

Finally, you need to prove the following correctness theorem, which states that our register-machine compiler is correct, in that executing the compiled instructions of an arithmetic expression yields (as the operand) the same result as evaluating the expression.
Hint: For proving correctness, you will need auxiliary lemmas, including that the instructions produced by cmp a r do not alter registers below r.
Moreover, the following lemma, which states that updating a register does not affect the variables, may be useful:

```
lemma reg_var[simp]: "s (Regr:=x) o Var =soVar"
    by auto
theorem cmp_correct: "exec (cmp a r) \(\sigma(\) Reg \(r)=\) aval a \((\sigma\) o Var)"
```

