
Technische Universität München WS 2021/22
Institut für Informatik 9.11.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Lectures
Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool.
Intuitively, R s t represents a single step from state s to state t.
The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).
Formalize the reflexive transitive closure as an inductive predicate:
inductive star :: “(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:
lemma star_prepend: “[[r x y; star r y z]] =⇒ star r x z”

lemma star_append: “[[star r x y; r y z]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round (append if you
prepended the step before or vice versa):
inductive star ′ :: “(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

Prove the equivalence of your two formalizations:
lemma “star r x y = star ′ r x y”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values—e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

1

Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.
fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec_comp to show that programs output by the
compiler never underflow the stack:

theorem exec_comp: “exec (comp a) s stk = Some (aval a s # stk)”

Exercise 3.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisym-
metric and T is a subset of A. Show with a structured, Isar-style proof that then A is
also a subset of T (without proof methods more powerful than simp!):
lemma

assumes total: “∀ x y. T x y ∨ T y x”
and anti: “∀ x y. A x y ∧ A y x −→ x = y”
and subset: “∀ x y. T x y −→ A x y”

shows “A x y −→ T x y”

Homework 3.1 Grammars for Parenthesis Languages

Submission until Sunday, November 14, 23:59pm.
In this homework, we will use inductive predicates to specify grammars for languages
consisting of words of opening and closing parentheses. We model parentheses as follows:
datatype paren = Open | Close

We define the language of words with balanced parentheses:

S −→ ε | SS | (S)

as an inductive predicate with the following cases:
S []

[[S xs; S ys]] =⇒ S (xs @ ys)
S xs =⇒ S (Open # xs @ [Close])

Show that words of the language contain the same amount of opening and closing paren-
theses:

theorem S_count: “S xs =⇒ count xs Open = count xs Close”

2

Now consider the language that is defined by the following variation of the grammar:

T −→ ε | TT | (T) | (T

inductive T :: “paren list ⇒ bool”

• Define T as a inductive predicate in Isabelle (the example should be easily provable
by your introduction rules)

• Show that the language produced by T is at least as large as the one produced by
S :

lemma example: “T [Open, Open]”

theorem S_T : “S xs =⇒ T xs”

Show that the converse also holds under the condition that the word contains the same
amount of opening and closing parentheses:

theorem T_S : “T xs =⇒ count xs Open = count xs Close =⇒ S xs”

This reuses the count function known from sheet 1. Hint: You will need a lemma
connecting the number of opening and closing parentheses in words produced by T.

Homework 3.2 Compilation to Register Machine

Submission until Sunday, November 14, 23:59pm.

In this exercise, you will define a compilation function from arithmetic expressions to
register machines and prove that the compilation is correct.

The registers in our simple register machines are natural numbers. These are the avail-
able instructions:
datatype instr = LD reg vname | ADD reg op op
LD loads a variable value in a register. ADD adds the contents of the two operands,
placing the result in the register.
An operand is either a register or a constant:
datatype op = REG reg | VAL val
Recall that a variable state is a function from variable names to integers. Our machine
state mstate contains both, variables and registers. For technical reasons, we encode it
into a single function v_or_reg ⇒ int:
datatype v_or_reg = Var vname | Reg reg
Note: To access a variable value, we can write σ (Var x), to access a register, we can
write σ (Reg x).

3

To extract the variable state from a machine state σ, we can use σ ◦ Var, where o is
function composition.
Complete the following definition of the function for executing instructions on a machine
state σ.
fun op_val :: “op ⇒ mstate ⇒ int”
fun exec1 :: “instr ⇒ mstate ⇒ mstate”
fun exec :: “instr list ⇒ mstate ⇒ mstate”

We are finally ready for the compilation function. Your task is to define a function cmp
that takes an arithmetic expression a and a register r and produces a list of register-
machine instructions leading to this value.
fun cmp :: “aexp ⇒ reg ⇒ instr list”

Your program should need no more ADD instructions than there are Plus operations in
the program, except if the expression is a single N.
Prove that property!
theorem cmp_len: “¬is_N a =⇒ num_add (cmp a r) ≤ num_plus a”

Finally, you need to prove the following correctness theorem, which states that our
register-machine compiler is correct, in that executing the compiled instructions of an
arithmetic expression yields (as the operand) the same result as evaluating the expres-
sion.
Hint: For proving correctness, you will need auxiliary lemmas, including that the in-
structions produced by cmp a r do not alter registers below r.
Moreover, the following lemma, which states that updating a register does not affect the
variables, may be useful:

lemma reg_var [simp]: “s (Reg r := x) o Var = s o Var”
by auto

theorem cmp_correct: “exec (cmp a r) σ (Reg r) = aval a (σ o Var)”

4

