Semantics of Programming Lectures

Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type $R :: 's \Rightarrow 's \Rightarrow bool$. Intuitively, $R \ s \ t$ represents a single step from state s to state t. The reflexive, transitive closure R^* of R is the relation that contains a step $R^* \ s \ t$, iff R can step from s to t in any number of steps (including zero steps).

Formalize the reflexive transitive closure as an inductive predicate:

inductive star :: " $(a \Rightarrow a \Rightarrow bool) \Rightarrow a \Rightarrow a \Rightarrow bool$ " for r

When doing so, you have the choice to append or prepend a step. In any case, the following two lemmas should hold for your definition:

lemma star_prepend: " $[[r x y; star r y z]] \implies star r x z$ "

lemma star_append: "[[star r x y; r y z]] \Longrightarrow star r x z"

Now, formalize the star predicate again, this time the other way round (append if you prepended the step before or vice versa):

inductive star' :: "(' $a \Rightarrow 'a \Rightarrow bool$) $\Rightarrow 'a \Rightarrow 'a \Rightarrow bool$ " for r

Prove the equivalence of your two formalizations:

lemma "star r x y = star' r x y"

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few values—e.g., executing an ADD instruction on an stack of size less than two. A well-formed sequence of instructions (e.g., one generated by comp) should never cause a stack underflow.

In this exercise, you will define a semantics for the stack-machine that throws an exception if the program underflows the stack. Modify the *exec1* and *exec* - functions, such that they return an option value, *None* indicating a stack-underflow.

fun exec1 :: "instr \Rightarrow state \Rightarrow stack \Rightarrow stack option" **fun** exec :: "instr list \Rightarrow state \Rightarrow stack \Rightarrow stack option"

Now adjust the proof of theorem *exec_comp* to show that programs output by the compiler never underflow the stack:

theorem exec_comp: "exec (comp a) $s \ stk = Some \ (aval \ a \ s \ \# \ stk)$ "

Exercise 3.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisymmetric and T is a subset of A. Show with a structured, Isar-style proof that then A is also a subset of T (without proof methods more powerful than simp!):

lemma assumes total: " $\forall x y. T x y \lor T y x$ " **and** anti: " $\forall x y. A x y \land A y x \longrightarrow x = y$ " **and** subset: " $\forall x y. T x y \longrightarrow A x y$ " **shows** "A x y $\longrightarrow T x y$ "

Homework 3.1 Grammars for Parenthesis Languages

Submission until Sunday, November 14, 23:59pm.

In this homework, we will use inductive predicates to specify grammars for languages consisting of words of opening and closing parentheses. We model parentheses as follows: **datatype** paren = Open | Close

We define the language of words with balanced parentheses:

$$S \longrightarrow \varepsilon \mid SS \mid (S)$$

as an inductive predicate with the following cases: $S \parallel$ $[S xs; S ys] \implies S (xs @ ys)$ $S xs \implies S (Open \# xs @ [Close])$

Show that words of the language contain the same amount of opening and closing parentheses:

theorem S_count: "S xs \implies count xs Open = count xs Close"

Now consider the language that is defined by the following variation of the grammar:

$$T \longrightarrow \varepsilon \mid TT \mid (T) \mid (T)$$

inductive T :: "paren list \Rightarrow bool"

- Define T as a inductive predicate in Isabelle (the example should be easily provable by your introduction rules)
- Show that the language produced by T is at least as large as the one produced by S:

lemma example: "T [Open, Open]"

theorem S_T : "S xs \implies T xs"

Show that the converse also holds under the condition that the word contains the same amount of opening and closing parentheses:

theorem $T_S: "T xs \Longrightarrow count xs Open = count xs Close \Longrightarrow S xs"$

This reuses the *count* function known from sheet 1. *Hint:* You will need a lemma connecting the number of opening and closing parentheses in words produced by T.

Homework 3.2 Compilation to Register Machine

Submission until Sunday, November 14, 23:59pm.

In this exercise, you will define a compilation function from arithmetic expressions to register machines and prove that the compilation is correct.

The registers in our simple register machines are natural numbers. These are the available instructions:

datatype $instr = LD reg vname \mid ADD reg op op$

LD loads a variable value in a register. ADD adds the contents of the two operands, placing the result in the register.

An operand is either a register or a constant:

datatype $op = REG reg \mid VAL val$

Recall that a variable state is a function from variable names to integers. Our machine state *mstate* contains both, variables and registers. For technical reasons, we encode it into a single function $v_or_reg \Rightarrow int$:

datatype $v_or_reg = Var vname \mid Reg reg$

Note: To access a variable value, we can write σ (*Var x*), to access a register, we can write σ (*Reg x*).

To extract the variable state from a machine state σ , we can use $\sigma \circ Var$, where o is function composition.

Complete the following definition of the function for executing instructions on a machine state σ .

fun $op_val :: "op \Rightarrow mstate \Rightarrow int"$ **fun** $<math>exec1 :: "instr \Rightarrow mstate \Rightarrow mstate"$ **fun** $<math>exec :: "instr list \Rightarrow mstate \Rightarrow mstate"$

We are finally ready for the compilation function. Your task is to define a function cmp that takes an arithmetic expression a and a register r and produces a list of registermachine instructions leading to this value.

fun cmp :: " $aexp \Rightarrow reg \Rightarrow instr$ list"

Your program should need no more ADD instructions than there are *Plus* operations in the program, except if the expression is a single N.

Prove that property!

theorem cmp_len: " $\neg is_N a \implies num_add (cmp \ a \ r) \le num_plus \ a$ "

Finally, you need to prove the following correctness theorem, which states that our register-machine compiler is correct, in that executing the compiled instructions of an arithmetic expression yields (as the operand) the same result as evaluating the expression.

Hint: For proving correctness, you will need auxiliary lemmas, including that the instructions produced by $cmp \ a \ r$ do not alter registers below r.

Moreover, the following lemma, which states that updating a register does not affect the variables, may be useful:

lemma $reg_var[simp]$: "s (Reg r := x) o Var = s o Var" by auto

theorem cmp_correct: "exec (cmp a r) σ (Reg r) = aval a (σ o Var)"