
Technische Universität München WS 2021/22
Institut für Informatik 7.12.2021

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Lectures
Exercise Sheet 7

Exercise 7.1 Security type system: bottom-up with subsumption

Recall security type systems for information flow control from the lecture. Such a type
systems can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

• Define a bottom-up security type system for information flow control with sub-
sumption rule (see below, add the subsumption rule).

• Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

inductive sec_type2 ′ :: “com ⇒ level ⇒ bool” (“(` ′′ _ : _)” [0,0] 50) where
Skip2 ′: “` ′ SKIP : l” |
Assign2 ′: “sec x ≥ sec a =⇒ ` ′ x ::= a : sec x” |
Seq2 ′: “[[` ′ c1 : l; ` ′ c2 : l]] =⇒ ` ′ c1 ;; c2 : l” |
If2 ′: “[[sec b ≤ l; ` ′ c1 : l; ` ′ c2 : l]] =⇒ ` ′ IF b THEN c1 ELSE c2 : l” |
While2 ′: “[[sec b ≤ l; ` ′ c : l]] =⇒ ` ′ WHILE b DO c : l”
lemma “` c : l =⇒ ` ′ c : l”
lemma “` ′ c : l =⇒ ∃ l ′ ≥ l. ` c : l ′”

Exercise 7.2 Available Expressions

Regard the function AA, which computes the available assignments of a command. An
available assignment is a pair of a variable and an expression such that the variable holds
the value of the expression in the current state. The function AA c A below computes
the available assignments after executing command c, assuming that A is the set of
available assignments for the initial state.
Available assignments can be used for program optimization, by avoiding recomputation
of expressions whose value is already available in some variable.
Why does the assignment case need to check if x is in a?
fun AA :: “com ⇒ (vname × aexp) set ⇒ (vname × aexp) set” where

1

“AA SKIP A = A”
| “AA (x ::= a) A = (if x /∈ vars a then {(x, a)} else {})

∪ {(x ′, a ′). (x ′, a ′) ∈ A ∧ x /∈ {x ′} ∪ vars a ′}”
| “AA (c1;; c2) A = (AA c2 ◦ AA c1) A”
| “AA (IF b THEN c1 ELSE c2) A = AA c1 A ∩ AA c2 A”
| “AA (WHILE b DO c) A = A ∩ AA c A”

Now show that the analysis is sound:
theorem AA_sound:

“(c, s) ⇒ s ′ =⇒ ∀ (x, a) ∈ AA c {}. s ′ x = aval a s ′”

Hint: You will have to generalize the theorem for the induction to go through. You may
assume idempotency of AA in the proof:
lemma AA_idem: “AA c (AA c A) = AA c A”

Now prove the idempotency lemma.
You will find that a straightforward proof is quite difficult; an easier solution is to find an
equivalent formulation with two functions where the first one specifies which assignments
AA adds to A (gen), and the second one which it removes (kill). Those functions need
to be mutually recursive; you can add the equations for both below.
fun gen :: “com ⇒ (vname × aexp) set” and kill :: “com ⇒ (vname × aexp) set”

Examples:
lemma “gen (′′x ′′::=N 5;; ′′x ′′::= N 6) = {(′′x ′′,N 6)}”

by simp

lemma “(′′x ′′, N 6) /∈ kill (′′x ′′::=N 5;; ′′x ′′::= N 6)”
by simp

For this formulation, the idempotency lemma should be straightforward, as should the
proof that they are equal:
lemma AA_gen_kill: “AA c A = (A ∪ gen c) − kill c”

Note that in the lecture, gen/kill will be defined slightly differently.

Homework 7.1 Terminating While Loops

Submission until Sunday, Dec 12, 23:59pm.
The objective of this homework is to identify while loops of the form while x<n do c,
such that x is a variable, n is a constant, and the execution of command c is guaranteed
to increment x.

Your first task is to write a function that checks whether a command is guaranteed to
increment a variable. Note: This predicate can only be an approximation. You are not

2

required to use information of conditions, nor to track other variables than the regarded
one. You need only consider arithmetic expressions of form y + k (for variables y and
constants k).
Hint: An auxiliary function invar that checks whether a command is guaranteed to
preserve the value of a variable may be helpful:
fun invar :: “vname ⇒ com ⇒ bool”
fun incr :: “vname ⇒ com ⇒ bool”

Some tests for the approximation:
value “incr ′′x ′′ (′′x ′′ ::= Plus (V ′′x ′′) (N 0);; ′′x ′′ ::= Plus (V ′′x ′′) (N 2)) = True”
value “incr ′′y ′′ (

WHILE Less (V ′′y ′′) (N 2)
DO

′′y ′′ ::= Plus (V ′′y ′′) (N 1);;
′′x ′′::=Plus (V ′′x ′′) (N (−1))

) = False”

Prove that your approximation is correct:

lemma incr_less: “(c,s) ⇒ t =⇒ incr x c =⇒ s x < t x”

Use your approximation to write a termination checker, that accepts programs where all
the while-loops are of the form described above.
fun terminates :: “com ⇒ bool”

Prove that your termination checker only accepts terminating programs:
terminates c =⇒ ∃ t. (c, s) ⇒ t
For that, you will need the the crucial auxiliary lemma, namely that whenever c always
terminates and increments x, then also the while-loop while (x<k) c always terminates.
You may use the induction rule less_induct for an inductive argument over the difference
of x and k:
(
∧

x. (
∧

y. y < x =⇒ P y) =⇒ P x) =⇒ P a
The rule works natural numbers; you can use nat to convert an int to nat.
lemma term_w:

assumes step: “
∧

s. ∃ t. (c,s) ⇒ t”
and incr : “incr x c”

shows “∃ t. (WHILE Less (V x) (N k) DO c, s) ⇒ t”

Finally, prove:
theorem term_big_step: “terminates c =⇒ ∃ t. (c,s) ⇒ t”

3

Homework 7.2 A Typed Language

Submission until Sunday, Dec 12, 23:59pm.
We unify boolean expressions bexp and arithmetic expressions aexp into one expressions
language exp. We also define a datatype val to represent either integers or booleans.
We then give a type system and small semantics. Your task is to show preservation and
progress of the type system.

Preparation 1: We define unified values and expressions:
datatype val = Iv int | Bv bool
datatype exp = N int | V (char list) | Plus exp exp | Bc bool | Not exp | And exp exp
| Less exp exp

Evaluation is now defined as an inductive predicate only working when the types of the
values are correct, i.e.:
eval (N i) s (Iv i)
eval (V x) s (s x)
[[eval a1 s (Iv i1); eval a2 s (Iv i2)]] =⇒ eval (Plus a1 a2) s (Iv (i1 + i2))
eval (Bc v) s (Bv v)
eval b s (Bv bv) =⇒ eval (Not b) s (Bv (¬ bv))
[[eval b1 s (Bv bv1); eval b2 s (Bv bv2)]] =⇒ eval (And b1 b2) s (Bv (bv1 ∧ bv2))
[[eval a1 s (Iv i1); eval a2 s (Iv i2)]] =⇒ eval (Less a1 a2) s (Bv (i1 < i2))

Preparation 2: The small-step semantics are as before, we just replaced aval and bval
with eval:
eval a s v =⇒ (x ::= a, s) → (SKIP, s(x := v))
eval b s (Bv True) =⇒ (IF b THEN c1 ELSE c2, s) → (c1, s)
eval b s (Bv False) =⇒ (IF b THEN c1 ELSE c2, s) → (c2, s)

Preparation 3: We introduce the type system:
datatype ty = Ity | Bty

Γ ` N i : Ity
Γ ` V x : Γ x
[[Γ ` a1 : Ity; Γ ` a2 : Ity]] =⇒ Γ ` Plus a1 a2 : Ity
Γ ` Bc v : Bty
Γ ` b : Bty =⇒ Γ ` Not b : Bty
[[Γ ` b1 : Bty; Γ ` b2 : Bty]] =⇒ Γ ` And b1 b2 : Bty
[[Γ ` a1 : Ity; Γ ` a2 : Ity]] =⇒ Γ ` Less a1 a2 : Bty

4

Γ ` SKIP
Γ ` a : Γ x =⇒ Γ ` x ::= a
[[Γ ` c1; Γ ` c2]] =⇒ Γ ` c1;; c2
[[Γ ` b : Bty; Γ ` c1; Γ ` c2]] =⇒ Γ ` IF b THEN c1 ELSE c2
[[Γ ` b : Bty; Γ ` c]] =⇒ Γ ` WHILE b DO c

We define a state typing styping to describe the type context of a state:
type (Iv i) = Ity
type (Bv r) = Bty

(Γ ` s) = (∀ x. type (s x) = Γ x)

Task: Show progress and then soundness of the type system:

theorem progress: “Γ ` c =⇒ Γ ` s =⇒ c 6= SKIP =⇒ ∃ cs ′. (c,s) → cs ′”
theorem type_sound:

“(c,s) →∗ (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ c ′ 6= SKIP =⇒ ∃ cs ′′. (c ′,s ′) → cs ′′”

Hint: For most of the proof work, you should be able to closely follow the proofs in the
original IMP theory.

5

