
Technische Universität München WS 2021/22
Institut für Informatik 25.01.

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Lectures
Exercise Sheet 12

Exercise 12.1 Complete Lattices

Which of the following ordered sets are complete lattices?
• N, the set of natural numbers {0, 1, 2, 3, . . .} with the usual order
• N∪{∞}, the set of natural numbers plus infinity, with the usual order and n < ∞

for all n ∈ N.
• A finite set A with a total order ≤ on it.

Exercise 12.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.
datatype sign = Pos | Zero | Neg | Any

instantiation sign :: order
instantiation sign :: semilattice_sup_top
fun γ_sign :: “sign ⇒ val set”
fun num_sign :: “val ⇒ sign”
fun plus_sign :: “sign ⇒ sign ⇒ sign”
global_interpretation Val_semilattice

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
global_interpretation Abs_Int

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
defines aval_sign = aval ′ and step_sign = step ′ and AI_sign = AI

Some tests:
definition “test1_sign =

′′x ′′ ::= N 1;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)”

value “show_acom (the(AI_sign test1_sign))”

definition “test2_sign =
′′x ′′ ::= N 1;;

1

WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)”

definition “steps c i = ((step_sign >) ^^ i) (bot c)”

value “show_acom (steps test2_sign 0)”

...
value “show_acom (steps test2_sign 6)”
value “show_acom (the(AI_sign test2_sign))”

Exercise 12.3 AI for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure
out, that after executing the program x:=2; IF x<2 THEN x:=2 ELSE x:=1, x will be
constant.
In this exercise, we extend our abstract interpreter with a simple analysis of boolean ex-
pressions. To this end, modify locale Val_semilattice in theory Abs_Int0.thy as follows:

• Introduce an abstract domain ′bv for boolean values, add, analogously to num ′ and
plus ′ also functions for the boolean operations and for less.

• Modify Abs_Int0 to accommodate for your changes.

Homework 12.1 Prefix Analysis

Submission until Sunday, Jan 30, 23:59pm. In this homework, you shall modify IMP to
work on strings rather than integers, and define an abstract interpretation based analysis
to return all possible one-element prefixes of the values of a variable.
The string operations shall be:

• Sc: A string constant.
• Conc: Concatenate two strings.
• Last: Return the last character of the operand as a string of length one. Empty

string if operand is empty.
• Butlast: Return the operand with the last character removed. Empty string if

operand is empty.
• Eq: Compare two strings for equality.

otherwise keep the arithmetic and Boolean operations, i.e. Variables, And, Not.
The provided template file contains all necessary theory up to abstract interpretation in
one file, with irrelevant parts stripped away. Use this template file as a basis for your
modifications.
Finally, implement an abstract interpretation with the abstract domain char option set,
which describes the set of possible one-element prefixes of a string, where None represents

2

the empty string. Try to define the abstract operations as precise as possible! As starting
point for your development, you can use the parity analysis, which is also included in
the template file. You are required to interpret the locales Val_semilattice, Abs_Int,
Abs_Int_mono, and Abs_Int_measure. Follow the naming schema, using ”prefixes”
instead of ”parity”.

3

