Semantics of Programming Lectures

Exercise Sheet 13

Exercise 13.1 Inverse Analysis

Consider a simple sign analysis based on this abstract domain:

```
datatype sign \(=\) None \(\mid\) Neg \(\mid\) Pos0 \(\mid\) Any
fun \(\gamma::\) "sign \(\Rightarrow\) val set" where
\(" \gamma\) None \(=\{ \} " \mid\)
\(" \gamma\) Neg \(=\{i . i<0\} "\)
\(" \gamma \operatorname{Pos} 0=\{i . i \geq 0\} " \mid\)
" \(\gamma\) Any \(=U N I V "\)
```

Define inverse analyses for "+" and " $<$ " and prove the required correctness properties:

```
fun inv_plus' \(::\) "sign \(\Rightarrow \operatorname{sign} \Rightarrow \operatorname{sign} \Rightarrow \operatorname{sign} * \operatorname{sign} "\)
lemma
    "【inv_plus' a a1 a2 = (a1',a2'); i1 \(\in \gamma a 1 ; \quad i 2 \in \gamma a 2 ; i 1+i 2 \in \gamma a \rrbracket\)
    \(\Longrightarrow i 1 \in \gamma a 1^{\prime} \wedge i 2 \in \gamma a 2^{\prime} "\)
fun inv_less' \(::\) "bool \(\Rightarrow\) sign \(\Rightarrow\) sign \(\Rightarrow\) sign \(*\) sign"
lemma
    "【inv_less' bv a1 a2 = (a1',a2'); i1 \(\in \gamma a 1 ; \quad i 2 \in \gamma a 2 ;(i 1<i 2)=b v \rrbracket\)
    \(\Longrightarrow i 1 \in \gamma a 1^{\prime} \wedge i 2 \in \gamma a 2^{\prime \prime}\)
```

The following is an old exam exercise:

Exercise 13.2 Command Equivalence

Recall the notion of command equivalence:
$c_{1} \sim c_{2} \equiv\left(\forall s t .\left(c_{1}, s\right) \Rightarrow t \longleftrightarrow\left(c_{2}, s\right) \Rightarrow t\right)$

1. Define a function is_SKIP :: com \Rightarrow bool which holds on commands equivalent to $S K I P$. The function is_SKIP should be as precise as possible, but it should not analyse arithmetic or boolean expressions.
Prove: is_SKIP $c \Longrightarrow c \sim S K I P$
2. The following command equivalence is wrong. Give a counterexample in the form of concrete instances for $b_{1}, b_{2}, c_{1}, c_{2}$, and a state s.

$$
\begin{align*}
& \text { WHILE } b_{1} \text { DO IF } b_{2} \text { THEN } c_{1} \text { ELSE } c_{2} \\
& \sim \text { IF } b_{2} \text { THEN }\left(\begin{array}{lllllll}
\text { WHILE } & b_{1} & \text { DO } & \left.c_{1}\right)
\end{array}\right) \text { ELSE }\left(\begin{array}{lll}
\text { WHILE } & \text { DO } & c_{2}
\end{array}\right) \tag{*}
\end{align*}
$$

3. Define a condition P on b_{1}, b_{2}, c_{1}, and c_{2} such that the previous statement (*) holds, i.e. $P b_{1} b_{2} c_{1} c_{2} \Longrightarrow(*)$
Your condition should be as precise as possible, but only using:

- lvars :: com \Rightarrow vname set (all left variables, i.e. written variables),
- rvars $::$ com \Rightarrow vname set (all right variables, i.e. all read variables),
- vars :: bexp \Rightarrow vname set (all variables in a condition), and
- boolean connectives and set operations

Homework 13.1 A generic abstract interpreter based on denotational semantics

Submission until Sunday, Feb 6, 23:59pm.
In this homework, you will be guided through developing a generic semantics for IMP. Then, for two such semantics whose domain parameters are related by a concretization function, you will prove soundness of a generic abstract interpreter. The framework will be mostly based on the complete_lattice type class, which you have seen in exercise sheet 12. This class is defined in the theory Complete_Lattices.

Similarly to what is described in the lectures for semilattices, the lattice order operations are extended from any type ' a to ${ }^{\prime} b \Rightarrow{ }^{\prime} a$ componentwise. We shall be interested in the least fixed points lfp F of monotone functionals F defined between complete lattices of functions. lfp F is itself a monotone function:
\llbracket mono $F ; \wedge f$. mono $f \Longrightarrow$ mono (F f $) \rrbracket \Longrightarrow$ mono (lfp F)
We shall also use a binary version of monotonicity:
mono2 $f \equiv \forall x 1$ x2 y1 y2. $x 1 \leq y 1 \wedge x 2 \leq y 2 \longrightarrow f x 1 x 2 \leq f y 1 y 2$
We work with the usual datatypes for expressions and commands, save for the fact that boolean expressions are slightly simplified:
datatype bexp $=$ Bc bool \mid Less aexp aexp
We shall consider a generic semantics, operating on states that store values from an unspecified domain 'val:
type_synonym 'val state $=$ "vname \Rightarrow 'val"
The domain bval for booleans shall be fixed to a type slightly more flexible than bool: datatype bval $=$ Nothing $|\operatorname{Tr}| F l \mid A n y$
Your first task is to organize bval as an order as follows: Tr and $F l$ represent the (incomparable) boolean values, Nothing is the bottom and Any is the top:

```
instantiation bval :: order
begin
definition less_eq_bval :: "bval => bval => bool"
definition less_bval ::"bval =>b bval => bool"
instance
end
```

Show the following for your definitions:
lemma not_less_eq_bval[simp]:

```
    \(" a \leq\) Nothing \(\longleftrightarrow a=\) Nothing"" \(\neg A n y \leq F l " " \neg \operatorname{Tr} \leq F l " " \neg A n y \leq \operatorname{Tr} " " \neg F l \leq \operatorname{Tr} "\)
```

bool is embeded in bval as expected:

```
BBc True = Tr
```

$B B c$ False $=F l$

Note that $B B c$ is an operation on the domain of boolean values corresponding to the syntactic $B c$ operator. Next, in a locale $S E M$, we fix operators corresponding to the syntactic constructs for arithmetic expressions. These operators are assumed monotone.

```
locale \(S E M=\)
    fixes \(N N\) :: "int \(\Rightarrow\) 'val::complete_lattice"
        and PPlus :: "'val \(\Rightarrow\) 'val \(\Rightarrow\) 'val"
        and LLess :: "'val \(\Rightarrow\) 'val \(\Rightarrow\) bval"
    assumes mono2_PPlus: "mono2 PPlus"
        and mono2_LLess:"mono2 LLess"
begin
```

We now work in the context of this locale, meaning that we have available the indicated constants for which we can use the stated assumptions. Define evaluation functions handling variables by state lookup and mapping the synactic operators to the fixed semantic ones (e.g., Plus to PPlus):
fun aval :: "aexp \Rightarrow 'val state \Rightarrow 'val"
fun bval :: "bexp \Rightarrow 'val state \Rightarrow bval"
The semantics is defined denotationally, assigning a function between states to each command. The while case requires taking a least fixed point, via the combinator wcomb.

```
definition wcomb :: "('val state \(\Rightarrow\) bval \() \Rightarrow(' v a l\) state \(\Rightarrow\) 'val state \() \Rightarrow\) ('val state \(\Rightarrow\) 'val state)
    \(\Rightarrow\) ('val state \(\Rightarrow\) 'val state)" where
    "wcomb bcws \(\begin{gathered}\text { case } b s \text { of }\end{gathered}\)
        Nothing \(\Rightarrow\) bot
    | \(\mathrm{Fl} \Rightarrow s\)
    \(\left\lvert\, \operatorname{Tr} \Rightarrow w\left(\begin{array}{cc}c\end{array}\right)\right.\)
    \(\mid A n y \Rightarrow \sup (w(c s)) s "\)
fun sem :: "com \(\Rightarrow\) 'val state \(\Rightarrow\) 'val state" where
    "sem SKIP \(s=s\) "
\(\mid " \operatorname{sem}(x::=a) s=s(x:=\) aval a \(s) "\)
```

```
|"sem (c1; c2) \(s=\operatorname{sem} c 2(\operatorname{sem} c 1 s) "\)
|"sem (IF b THEN c1 ELSE cZ) \(s=(\) case bval \(b s\) of
    Nothing \(\Rightarrow\) bot
    | Tr \(\Rightarrow\) sem c1s
    \(\mathrm{Fl} \Rightarrow \mathrm{sem} \mathrm{c2} s\)
    \(\mid \operatorname{Any} \Rightarrow \sup (\operatorname{sem} c 1\) s) (sem c2 s))"
|"sem (WHILE b DO c) \(s=l f p(w c o m b(\) bval b) \((\operatorname{sem} c)) s "\)
```

Prove that the command semantics is monotone. You will need lemmas about monotonicity of the various involved operators, as well as the following saying that wcomb preserves monotonicity:

```
lemma pres_mono_wcomb:
    assumes \(b\) : "mono \(b\) "
        and \(c\) : "mono \(c\) "
        and \(w\) : "mono \(w\) "
    shows "mono (wcomb bcw)"
lemma mono_wcomb: assumes \(c\) : "mono \(c\) "
    shows "mono (wcomb b c)"
lemma mono_sem: "mono (sem c)"
end
```

We are done with defining a parameterized generic semantics. Now we move to defining an abstract interpreter between two semantics. The following locale fixes two generic semantics: a "concrete" one on domain cval, whose operator names are prefixed by " C_{-}", and an "abstract" one on domain aval, whose operator names are prefixed by " A _".
It also fixes a monotone concretization function between their domains that behaves well w.r.t. the semantic operators. Thus, e.g., PPlus_ γ says that adding two abstract values and then concretizing yields an approximation of the result of adding the concretized values; in other words, the abstract operator $A _$PPlus is sound (via γ) w.r.t. the concrete operator C_PPlus.
Finally, it fixes an abstraction function α that can be used to obtain, for each concrete value, an abstract value that approximates it.
locale $A I=C: S E M C _N N C _P P l u s C _L L e s s+A: S E M A _N N A _P P l u s A _L L e s s$
for $C _N N$:: "int \Rightarrow 'cval::complete_lattice"
and C_PPlus :: "'cval $\Rightarrow{ }^{\prime}$ cval \Rightarrow^{\prime} cval"
and C_LLess $::$ "'cval $\Rightarrow{ }^{\prime}$ cval \Rightarrow bval"
and $A _N N::$ "int \Rightarrow 'aval::complete_lattice"
and $A _$PPlus :: "'aval \Rightarrow 'aval \Rightarrow 'aval"
and $A _L L e s s ~:: " ' a v a l \Rightarrow$ 'aval \Rightarrow bval"
$+$
fixes $\gamma::$ "aval \Rightarrow 'cval"
and $\alpha::$ "'cval \Rightarrow 'aval"

```
assumes \alpha_\gamma:" cv \leq \gamma (\alphacv)"
    and mono_\gamma:"mono \gamma"
    and NN_\gamma[simp]:"C_NN i\leq\gamma (A_NN i)"
    and PPlus_\gamma[simp]:"C_PPlus ( }\gamma\mathrm{ av1) ( }\gamma\mathrm{ av2) }\leq\gamma(A_PPlus av1 av2)"
    and LLess_\gamma[simp]:"C_LLess (\gamma av1) (\gamma av2) \leq A_LLess av1 av2"
begin
setup so that abbreviations are printed nicely:
abbreviation "C_aval \(\equiv\) C.aval" abbreviation "C_bval \(\equiv C . b v a l "\)
abbreviation "C_wcomb \(\equiv C . w c o m b "\) abbreviation "C_sem \(\equiv C . s e m "\)
abbreviation "A_aval \(\equiv\) A.aval" abbreviation "A_bval \(\equiv A . b v a l "\)
abbreviation " \(A \_w c o m b \equiv A . w c o m b\) " abbreviation " \(A \_\)sem \(\equiv A . s e m\) "
```

In the context of this locale, we have available all the definitions and facts from the locale SEM for the " $C_{\text {_ "-prefixed parameters, as well as those for the " } A \text { _"-prefixed }}$ parameters. We defined abbreviations so that you can use the same prefixes for the defined concepts too, e.g., C_sem, $A _s e m$. For theorems, use the prefixes "C." and " A.".
γ is extended to states as usual:
definition γ _st :: "'aval state \Rightarrow 'cval state"
where" $\gamma _s t s x \equiv \gamma(s x)$ "

Prove that the abstract semantics is sound w.r.t. the concrete semantics. You will need lemmas about soundness of the concrete evaluation operators, as well as the following lemmas which we proved for you:

```
lemma wcomb_ \(\gamma\) :
    assumes mw: "mono w"
        and \(w\) : " \(w\) o \(\gamma \_s t \leq \gamma \_\)st \(o w^{\prime} "\) and \(c\) : " \(c\) o \(\gamma \_\)st \(\leq \gamma \_s t o c\) \(c^{\prime} "\) and \(b\) : " \(b o \gamma \_s t \leq b^{\prime}\) "
    shows " \(\left(C \_w c o m b b c w\right)\) o \(\gamma \_\)st \(\leq \gamma \_\)st \(o\left(A \_w c o m b b^{\prime} c^{\prime} w^{\prime}\right)\) "
proof (subst le_fun_def, standard)
    have 0: " \(\backslash\) s. \(w\left(c\left(\gamma \_s t s\right)\right) \leq \gamma \_s t\left(w^{\prime}\left(c^{\prime} s\right)\right) "\)
            using \(m w w\) order_trans unfolding mono_def comp_def le_fun_def by blast
    fix \(s\) show " ( \(\left.C \_w c o m b b c w \circ \gamma \_s t\right) s \leq\left(\gamma \_s t \circ A \_w c o m b b^{\prime} c^{\prime} w^{\prime}\right) s\) "
    proof (cases" \(b^{\prime} s\) ")
        case Nothing
        hence " \(b\left(\gamma \_s t s\right)=\) Nothing"
            using \(b\) unfolding comp_def le_fun_def
            by (cases" \(\left.b\left(\gamma \_s t s\right) "\right)\) (metis bval.simps not_less_eq_bval) \()+\)
        thus ?thesis using Nothing unfolding C.wcomb_def A.wcomb_def by auto
    next
        case Tr
        hence " \(b\left(\gamma \_\right.\)st \(\left.s\right)=\) Nothing \(\vee b\left(\gamma \_\right.\)st \(\left.s\right)=T r "\)
            using \(b\) unfolding comp_def le_fun_def
            by (cases" \(\left.b\left(\gamma \_s t s\right) "\right)(\) metis not_less_eq_bval \()+\)
        thus ?thesis using \(\operatorname{Tr} 0\) unfolding C.wcomb_def A.wcomb_def by auto
    next
```

```
    case Fl
    hence "b ( }\gamma\_\mathrm{ st s) = Nothing }\veeb(\gamma_st s)=Fl
        using b unfolding comp_def le_fun_def
        by (cases" }b(\gamma_st s)") (metis not_less_eq_bval)
    thus ?thesis using Fl 0 unfolding C.wcomb_def A.wcomb_def by auto
    next
        case Any
        thus ?thesis
        unfolding C.wcomb_def A.wcomb_def
        by (auto split: bval.splits)
            (smt 0 \gamma_st_def le_fun_def le_sup_iff mono_\gamma mono__sup order__trans sup_fun_def)+
    qed
qed
lemmalfp_wcomb__\gamma:
    assumes c: "mono c"
        and b:"mono b"
        and c': "mono c'"
        and b': "mono b'"
        and cc': "c o \gamma_st \leq \gamma_st o c'"
        and bb
    shows "lfp (C_wcomb b c) ( 
proof -
    let ?F = "C_wcomb b c"
    let ?F' = "A_wcomb b' c'"
    have F: "mono ?F" and F': "mono ?F'"
        using C.mono_wcomb[OF c] A.mono_wcomb[OF c] by auto
    have "mono (lfp ?F) ^lfp ?F o \gamma_st \leq \gamma_st ○lfp ?F'"
    proof (induction rule: lfp_ordinal_induct[OF F])
        case 1 then show ?case
            using wcomb_\gamma[OF__ cc' bb',of__"lfp ?F'"] C.pres_mono_wcomb[OF b b c]
            unfolding lfp_unfold[symmetric,OF F'] by blast
    next
        case (2 A)
        then have "mono (Sup A)"
            using mono_Sup by fast
        moreover have "Sup A\circ\gamma_st \leq \gamma_st \circ lfp ?F'"
            unfolding comp_def using 2 by (auto simp: le_fun_def intro: SUP_least)
        ultimately show ?case by blast
    qed
    thus ?thesis by (simp add:le_fun_def)
qed
lemma soundness:" C_sem c ( 
```

To get a better grasp of how the above soundness result can be used, extend α to a function between states and prove the following theorem, showing how the concrete semantics is approximated by the abstract semantics on the abstracted state:
definition $\alpha _$st ::"'cval state \Rightarrow 'aval state"
lemma soundness_ α : " C _sem $c s \leq \gamma _$st $\left(A _\right.$sem $\left.c\left(\alpha _s t s\right)\right)$ "

