
Technische Universität München WS 2021/22
Institut für Informatik Feb 1

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Lectures
Exercise Sheet 13

Exercise 13.1 Inverse Analysis

Consider a simple sign analysis based on this abstract domain:
datatype sign = None | Neg | Pos0 | Any

fun γ :: “sign ⇒ val set” where
“γ None = {}” |
“γ Neg = {i. i < 0}” |
“γ Pos0 = {i. i ≥ 0}” |
“γ Any = UNIV”

Define inverse analyses for “+” and “<” and prove the required correctness properties:
fun inv_plus ′ :: “sign ⇒ sign ⇒ sign ⇒ sign ∗ sign”
lemma

“[[inv_plus ′ a a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1; i2 ∈ γ a2; i1+i2 ∈ γ a]]
=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′ ”

fun inv_less ′ :: “bool ⇒ sign ⇒ sign ⇒ sign ∗ sign”
lemma

“[[inv_less ′ bv a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1; i2 ∈ γ a2; (i1<i2) = bv]]
=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′”

The following is an old exam exercise:

Exercise 13.2 Command Equivalence

Recall the notion of command equivalence:

c1 ∼ c2 ≡ (∀ s t. (c1, s) ⇒ t ←→ (c2, s) ⇒ t)

1. Define a function is_SKIP :: com ⇒ bool which holds on commands equivalent to
SKIP. The function is_SKIP should be as precise as possible, but it should not
analyse arithmetic or boolean expressions.
Prove: is_SKIP c =⇒ c ∼ SKIP

1

2. The following command equivalence is wrong. Give a counterexample in the form
of concrete instances for b1, b2, c1, c2, and a state s.

WHILE b1 DO IF b2 THEN c1 ELSE c2
∼ IF b2 THEN (WHILE b1 DO c1) ELSE (WHILE b1 DO c2)

(∗)

3. Define a condition P on b1, b2, c1, and c2 such that the previous statement (∗)
holds, i.e. P b1 b2 c1 c2 =⇒ (∗)
Your condition should be as precise as possible, but only using:

• lvars :: com ⇒ vname set (all left variables, i.e. written variables),
• rvars :: com ⇒ vname set (all right variables, i.e. all read variables),
• vars :: bexp ⇒ vname set (all variables in a condition), and
• boolean connectives and set operations

Homework 13.1 A generic abstract interpreter based on denotational semantics

Submission until Sunday, Feb 6, 23:59pm.
In this homework, you will be guided through developing a generic semantics for IMP.
Then, for two such semantics whose domain parameters are related by a concretization
function, you will prove soundness of a generic abstract interpreter. The framework will
be mostly based on the complete_lattice type class, which you have seen in exercise sheet
12. This class is defined in the theory Complete_Lattices.
Similarly to what is described in the lectures for semilattices, the lattice order operations
are extended from any type ′a to ′b ⇒ ′a componentwise. We shall be interested in the
least fixed points lfp F of monotone functionals F defined between complete lattices of
functions. lfp F is itself a monotone function:
[[mono F ;

∧
f . mono f =⇒ mono (F f)]] =⇒ mono (lfp F)

We shall also use a binary version of monotonicity:
mono2 f ≡ ∀ x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 −→ f x1 x2 ≤ f y1 y2
We work with the usual datatypes for expressions and commands, save for the fact that
boolean expressions are slightly simplified:
datatype bexp = Bc bool | Less aexp aexp
We shall consider a generic semantics, operating on states that store values from an
unspecified domain ′val:
type_synonym ′val state = “vname ⇒ ′val”

The domain bval for booleans shall be fixed to a type slightly more flexible than bool:
datatype bval = Nothing | Tr | Fl | Any
Your first task is to organize bval as an order as follows: Tr and Fl represent the (in-
comparable) boolean values, Nothing is the bottom and Any is the top:

2

instantiation bval :: order
begin

definition less_eq_bval :: “bval ⇒ bval ⇒ bool”
definition less_bval :: “bval ⇒ bval ⇒ bool”
instance
end

Show the following for your definitions:
lemma not_less_eq_bval[simp]:

“a ≤ Nothing ←→ a = Nothing” “¬ Any ≤ Fl” “¬ Tr ≤ Fl” “¬ Any ≤ Tr” “¬ Fl ≤ Tr”

bool is embeded in bval as expected:
BBc True = Tr
BBc False = Fl
Note that BBc is an operation on the domain of boolean values corresponding to the
syntactic Bc operator. Next, in a locale SEM, we fix operators corresponding to the
syntactic constructs for arithmetic expressions. These operators are assumed monotone.
locale SEM =

fixes NN :: “int ⇒ ′val::complete_lattice”
and PPlus :: “ ′val ⇒ ′val ⇒ ′val”
and LLess :: “ ′val ⇒ ′val ⇒ bval”

assumes mono2_PPlus: “mono2 PPlus”
and mono2_LLess: “mono2 LLess”

begin

We now work in the context of this locale, meaning that we have available the indicated
constants for which we can use the stated assumptions. Define evaluation functions
handling variables by state lookup and mapping the synactic operators to the fixed
semantic ones (e.g., Plus to PPlus):
fun aval :: “aexp ⇒ ′val state ⇒ ′val”
fun bval :: “bexp ⇒ ′val state ⇒ bval”

The semantics is defined denotationally, assigning a function between states to each
command. The while case requires taking a least fixed point, via the combinator wcomb.
definition wcomb :: “(′val state ⇒ bval) ⇒ (′val state ⇒ ′val state) ⇒ (′val state ⇒ ′val state)
⇒ (′val state ⇒ ′val state)” where
“wcomb b c w s ≡ case b s of

Nothing ⇒ bot
| Fl ⇒ s
| Tr ⇒ w (c s)
| Any ⇒ sup (w (c s)) s”

fun sem :: “com ⇒ ′val state ⇒ ′val state” where
“sem SKIP s = s”
| “sem (x ::= a) s = s(x := aval a s)”

3

| “sem (c1 ; c2) s = sem c2 (sem c1 s)”
| “sem (IF b THEN c1 ELSE c2) s = (case bval b s of

Nothing ⇒ bot
| Tr ⇒ sem c1 s
| Fl ⇒ sem c2 s
| Any ⇒ sup (sem c1 s) (sem c2 s))”
| “sem (WHILE b DO c) s = lfp (wcomb (bval b) (sem c)) s”

Prove that the command semantics is monotone. You will need lemmas about mono-
tonicity of the various involved operators, as well as the following saying that wcomb
preserves monotonicity:
lemma pres_mono_wcomb:

assumes b: “mono b”
and c: “mono c”
and w: “mono w”

shows “mono (wcomb b c w)”

lemma mono_wcomb: assumes c: “mono c”
shows “mono (wcomb b c)”

lemma mono_sem: “mono (sem c)”

end

We are done with defining a parameterized generic semantics. Now we move to defining
an abstract interpreter between two semantics. The following locale fixes two generic
semantics: a “concrete” one on domain cval, whose operator names are prefixed by “C_”,
and an “abstract” one on domain aval, whose operator names are prefixed by “A_”.
It also fixes a monotone concretization function between their domains that behaves well
w.r.t. the semantic operators. Thus, e.g., PPlus_γ says that adding two abstract values
and then concretizing yields an approximation of the result of adding the concretized
values; in other words, the abstract operator A_PPlus is sound (via γ) w.r.t. the concrete
operator C_PPlus.
Finally, it fixes an abstraction function α that can be used to obtain, for each concrete
value, an abstract value that approximates it.
locale AI = C : SEM C_NN C_PPlus C_LLess + A : SEM A_NN A_PPlus A_LLess

for C_NN :: “int ⇒ ′cval::complete_lattice”
and C_PPlus :: “ ′cval ⇒ ′cval ⇒ ′cval”
and C_LLess :: “ ′cval ⇒ ′cval ⇒ bval”

and A_NN :: “int ⇒ ′aval::complete_lattice”
and A_PPlus :: “ ′aval ⇒ ′aval ⇒ ′aval”
and A_LLess :: “ ′aval ⇒ ′aval ⇒ bval”
+
fixes γ :: “ ′aval ⇒ ′cval”

and α :: “ ′cval ⇒ ′aval”

4

assumes α_γ: “cv ≤ γ (α cv)”
and mono_γ: “mono γ”
and NN_γ[simp]: “C_NN i ≤ γ (A_NN i)”
and PPlus_γ[simp]: “C_PPlus (γ av1) (γ av2) ≤ γ (A_PPlus av1 av2)”
and LLess_γ[simp]: “C_LLess (γ av1) (γ av2) ≤ A_LLess av1 av2”

begin

setup so that abbreviations are printed nicely:

abbreviation “C_aval ≡ C .aval” abbreviation “C_bval ≡ C .bval”
abbreviation “C_wcomb ≡ C .wcomb” abbreviation “C_sem ≡ C .sem”
abbreviation “A_aval ≡ A.aval” abbreviation “A_bval ≡ A.bval”
abbreviation “A_wcomb ≡ A.wcomb” abbreviation “A_sem ≡ A.sem”

In the context of this locale, we have available all the definitions and facts from the
locale SEM for the “C_”-prefixed parameters, as well as those for the “A_”-prefixed
parameters. We defined abbreviations so that you can use the same prefixes for the
defined concepts too, e.g., C_sem, A_sem. For theorems, use the prefixes “C .” and
“A.”.

γ is extended to states as usual:
definition γ_st :: “ ′aval state ⇒ ′cval state”

where “γ_st s x ≡ γ (s x)”

Prove that the abstract semantics is sound w.r.t. the concrete semantics. You will need
lemmas about soundness of the concrete evaluation operators, as well as the following
lemmas which we proved for you:
lemma wcomb_γ:

assumes mw: “mono w”
and w: “w o γ_st ≤ γ_st o w ′” and c: “c o γ_st ≤ γ_st o c ′” and b: “b o γ_st ≤ b ′”

shows “(C_wcomb b c w) o γ_st ≤ γ_st o (A_wcomb b ′ c ′ w ′)”
proof (subst le_fun_def , standard)

have 0: “
∧

s. w (c (γ_st s)) ≤ γ_st (w ′ (c ′ s))”
using mw w c order_trans unfolding mono_def comp_def le_fun_def by blast

fix s show “ (C_wcomb b c w ◦ γ_st) s ≤ (γ_st ◦ A_wcomb b ′ c ′ w ′) s”
proof (cases “b ′ s”)

case Nothing
hence “b (γ_st s) = Nothing”

using b unfolding comp_def le_fun_def
by (cases “b (γ_st s)”) (metis bval.simps not_less_eq_bval)+

thus ?thesis using Nothing unfolding C .wcomb_def A.wcomb_def by auto
next

case Tr
hence “b (γ_st s) = Nothing ∨ b (γ_st s) = Tr”

using b unfolding comp_def le_fun_def
by (cases “b (γ_st s)”) (metis not_less_eq_bval)+

thus ?thesis using Tr 0 unfolding C .wcomb_def A.wcomb_def by auto
next

5

case Fl
hence “b (γ_st s) = Nothing ∨ b (γ_st s) = Fl”

using b unfolding comp_def le_fun_def
by (cases “b (γ_st s)”) (metis not_less_eq_bval)+

thus ?thesis using Fl 0 unfolding C .wcomb_def A.wcomb_def by auto
next

case Any
thus ?thesis

unfolding C .wcomb_def A.wcomb_def
by (auto split: bval.splits)
(smt 0 γ_st_def le_fun_def le_sup_iff mono_γ mono_sup order_trans sup_fun_def)+

qed
qed

lemma lfp_wcomb_γ:
assumes c: “mono c”

and b: “mono b”
and c ′: “mono c ′”
and b ′: “mono b ′”
and cc ′: “c o γ_st ≤ γ_st o c ′”
and bb ′: “b o γ_st ≤ b ′”

shows “lfp (C_wcomb b c) (γ_st s) ≤ γ_st (lfp (A_wcomb b ′ c ′) s)”
proof −

let ?F = “C_wcomb b c”
let ?F ′ = “A_wcomb b ′ c ′”
have F : “mono ?F” and F ′: “mono ?F ′”

using C .mono_wcomb[OF c] A.mono_wcomb[OF c ′] by auto
have “mono (lfp ?F) ∧ lfp ?F ◦ γ_st ≤ γ_st ◦ lfp ?F ′”
proof (induction rule: lfp_ordinal_induct[OF F])

case 1 then show ?case
using wcomb_γ[OF _ _ cc ′ bb ′, of _“lfp ?F ′”] C .pres_mono_wcomb[OF b c]
unfolding lfp_unfold[symmetric, OF F ′] by blast

next
case (2 A)
then have “mono (Sup A)”

using mono_Sup by fast
moreover have “Sup A ◦ γ_st ≤ γ_st ◦ lfp ?F ′”

unfolding comp_def using 2 by (auto simp: le_fun_def intro: SUP_least)
ultimately show ?case by blast

qed
thus ?thesis by (simp add: le_fun_def)

qed

lemma soundness: “C_sem c (γ_st s) ≤ γ_st (A_sem c s)”

To get a better grasp of how the above soundness result can be used, extend α to a
function between states and prove the following theorem, showing how the concrete
semantics is approximated by the abstract semantics on the abstracted state:

6

definition α_st :: “ ′cval state ⇒ ′aval state”

lemma soundness_α: “C_sem c s ≤ γ_st (A_sem c (α_st s))”

7

