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Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be imported as follows:
theory ex02 imports “HOL−IMP.AExp” “HOL−IMP.BExp” begin

Exercise 2.1 Induction

Define a function deduplicate that removes duplicate occurrences of subsequent elements
from a list.
fun deduplicate :: “ ′a list ⇒ ′a list”

The following should evaluate to True, for instance:
value “deduplicate [1,1,2,3,2,2,1::nat] = [1,2,3,2,1]”

Prove that a deduplicated list has at most the length of the original list:
lemma “length (deduplicate xs) ≤ length xs”

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.
Define a function subst that performs a syntactic substitution, i.e., subst x a ′ a shall be
the expression a where every occurrence of variable x has been replaced by expression
a ′.
fun subst :: “vname ⇒ aexp ⇒ aexp ⇒ aexp”

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.
The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:
lemma subst_lemma: “aval (subst x a ′ a) s = aval a (s(x := aval a ′ s))”

Note: The expression s(x := v) updates a function at point x. It is defined as:
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f (a := b) = (λx. if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:
lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation x++, as
known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick ( ′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′ ⇒ state ⇒
val×state, i.e., it takes an expression and a state, and returns a value and a new state.
Define the function aval ′.

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx. 0

value “<>(x := 0)”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:
lemma aval ′_inc:

“aval ′ a <> = (v, s ′) =⇒ 0 ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split: if_splits prod.splits).

2



Homework 2.1 Run-Length Encoding

Submission until Monday, Nov 7, 23:59pm.

We want to encode a list of integers as follows: All consecutive repetitions of an element
are replaced by a pair that has 1) the element and 2) the number of repetitions.
For example:

enc [1,3,3,8] = [(1,1),(3,2),(8,1)]

enc [3,4,5] = [(3,1),(4,1),(5,1)]

Background: This algorithm may be used in lossless data compression, when it is ex-
pected that data was created by modifying a fixed background, e.g. in palette-based
computer images.
Define a function to encode a list with run-length encoding.
fun rlenc :: “ ′a ⇒ nat ⇒ ′a list ⇒ ( ′a × nat) list”

The first argument is meant to keep track of the value that was last seen, and the second
argument is meant to specify the number of times the last element was seen. Hint: in
Isabelle/HOL there is the function replicate that takes a natural number n and an object
a, and returns a list of length n, whose members are all a.
value “replicate (3::nat) (1::nat) = [1,1,1]”

Test cases:
value “rlenc 0 0 ([1,3,3,8] :: int list) = [(0,0),(1,1),(3,2),(8,1)]”
value “rlenc 1 0 ([3,4,5] :: int list) = [(1,0),(3,1),(4,1),(5,1)]”

Define the decoder. It takes a list that is encoded by rlenc.
fun rldec :: “( ′a × nat) list ⇒ ′a list”

Show that encoding and then decoding yields the same list. Hint: You will need a
lemma which needs generalization. Moreover, you will need to use the lemma repli-
cate_append_same, if you used replicate in defining rlenc.

theorem enc_dec: “rldec (rlenc a 0 l) = l”

Homework 2.2 Multiplication & Distributivity

Submission until Monday, Nov 7, 23:59pm.

In this exercise we add our language of arithmetic expressions with multiplication of
constants and expressions.
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We say that an arithmetic expression is normalized (with respect to distributivity) if it is
an arithmetic expression where constants are only multiplied to variables. For example:
Mult 3 (V ′′x ′′) is normalized. The following examples are not normalized: Mult 5 (N
6), Mult 5 (Mult 6 a), or Mult 5 (Plus a b).

We modify the aexp datatype by adding a syntactic construct Mult for multiplication
with constants:
datatype aexp = N int | V (char list) | Plus aexp aexp | Mult int aexp

We modify the evaluation function aval to accommodate for the new construct Mult:
aval (Mult i a) s = i ∗ aval a s

Step A Implement the function normal which returns True only when the arithmetic
expression is normalized.
fun normal :: “aexp ⇒ bool”

Step B Implement the function normalize which translates an arbitrary arithmetic
expression intro a normalized arithmetic expression.
fun normalize :: “aexp ⇒ aexp”

Step C Prove that normalize does not change the result of the arithmetic expression.
theorem semantics_unchanged: “aval (normalize a) s = aval a s”

Hint: It can be helpful to add the following modifiers to auto and friends: split: aexp.split.

Step D Prove that normalize does indeed return a normalized arithmetic expression.
theorem normalize_normalizes: “normal (normalize a)”
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