
Technische Universität München WS 2022/23
Institut für Informatik 8.11.2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type R :: ′s ⇒ ′s ⇒ bool.
Intuitively, R s t represents a single step from state s to state t.
The reflexive, transitive closure R∗ of R is the relation that contains a step R∗ s t, iff R
can step from s to t in any number of steps (including zero steps).
Formalize the reflexive transitive closure as an inductive predicate:
inductive star :: “( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

When doing so, you have the choice to append or prepend a step. In any case, the
following two lemmas should hold for your definition:
lemma star_prepend: “[[r x y; star r y z]] =⇒ star r x z”

lemma star_append: “[[ star r x y; r y z ]] =⇒ star r x z”

Now, formalize the star predicate again, this time the other way round (append if you
prepended the step before or vice versa):
inductive star ′ :: “( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool” for r

Prove the equivalence of your two formalizations:
lemma “star r x y = star ′ r x y”

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few
values—e.g., executing an ADD instruction on an stack of size less than two. A well-
formed sequence of instructions (e.g., one generated by comp) should never cause a stack
underflow.

In this exercise, you will define a semantics for the stack-machine that throws an excep-
tion if the program underflows the stack.

1



Modify the exec1 and exec - functions, such that they return an option value, None
indicating a stack-underflow.
fun exec1 :: “instr ⇒ state ⇒ stack ⇒ stack option”
fun exec :: “instr list ⇒ state ⇒ stack ⇒ stack option”

Now adjust the proof of theorem exec_comp to show that programs output by the
compiler never underflow the stack:

theorem exec_comp: “exec (comp a) s stk = Some (aval a s # stk)”

Exercise 3.3 A Structured Proof on Relations

We consider two binary predicates T and A and assume that T is total, A is antisym-
metric and T is a subset of A. Show with a structured, Isar-style proof that then A is
also a subset of T (without proof methods more powerful than simp!):
lemma

assumes total: “∀ x y. T x y ∨ T y x”
and anti: “∀ x y. A x y ∧ A y x −→ x = y”
and subset: “∀ x y. T x y −→ A x y”

shows “A x y −→ T x y”

Homework 3.1 A Simple Grammar

Submission until Monday, November 14, 2022, 23:59pm.
You are given the following grammar:

S → ε | aSb

Your first task is to formalize this grammar as an inductive definition in Isabelle:
inductive_set G :: “string set”

Our goal is to show that G produces the following language:
L = {w. ∃n. w = replicate n a @ replicate n b}

First prove this direction:
theorem G_is_replicate:

assumes “w ∈ G”
shows “∃n. w = replicate n a @ replicate n b”

And now the converse:
theorem replicate_G:

assumes “w = replicate n a @ replicate n b”

2



shows “w ∈ G”

Finally, we can prove that G indeed produces L:
corollary L_eq_G: “L = G”

unfolding L_def using G_is_replicate replicate_G by auto

Homework 3.2 Register Machine from Hell

Submission until Monday, November 14, 2022, 23:59pm.
Processors from Hell has released its next-generation RISC processor. It features an infi-
nite bank of registers R0, R1, etc, holding unbounded integers. Register R0 plays the role
of the accumulator and is the implicit source or destination register of all instructions.
Any other register involved in an instruction must be distinct from R0. To enforce this
requirement the processor implicitly increments the index of the other register. There
are 4 instructions:
LDI i has the effect R0 := i

LD n has the effect R0 := Rn+1

ST n has the effect Rn+1 := R0

ADD n has the effect R0 := R0 +Rn+1

where i is an integer and n a natural number.
The instructions are specified by:
datatype instr = LDI int | LD nat | ST nat | ADD nat

The state of the machine is just a function from register numbers to values
type_synonym rstate = “nat ⇒ int”

Define a function to execute a single instruction
fun exec :: “instr ⇒ rstate ⇒ rstate”

Lift your definition to lists of instructions
fun execs :: “instr list ⇒ rstate ⇒ rstate”

Show that execs commutes with op @. Hint: The [simp] - attribute declares this as a
default simplifier rule, such that simp and auto will rewrite with this rule by default.
theorem execs_append[simp]: “

∧
s. execs (xs @ ys) s = execs ys (execs xs s)”

Next, we want to write a compiler for arithmetic expressions. To simplify the mapping
from variables to registers, we define variable names to be natural numbers.
datatype expr = C int | V nat | A expr expr
The evaluation function, val, is defined in the usual way.

You have been recruited to write a compiler from expr to instr list. You remember your
compiler course and decide to emulate a stack machine using free registers, i.e. registers
not used by the expression you are compiling. The type of your compiler is

3



fun cmp :: “expr ⇒ nat ⇒ instr list”

where the second argument is the index of the first free register and can be used to store
intermediate results. The result of an expression should be returned in R0. Because R0

is the accumulator, you decide on the following compilation scheme: Variable i will be
held in Ri+1.

To actually compile an expression, you need to find an initial value for the free register
index. Define a function that returns the maximum variable used in an arithmetic
expression.
fun maxvar :: “expr ⇒ nat”

Show that the value of expressions does not depend on variables greater than maxvar.
theorem val_maxvar_same[simp]:

“∀n ≤ maxvar e. s n = s ′ n =⇒ val e s = val e s ′”

Finally, prove that your compiler is correct. You will need to generalize the lemma to
any free register index > maxvar e.
Moreover, an auxiliary lemma may be useful, which states that a compiled program does
not change registers less than the index of the first free register.
Hint: Beware of off-by-one errors introduced by the implicit increment of the register
index. The register indexes in the state are shifted by one wrt. the registers in the
instructions!

theorem compiler_correct: “execs (cmp e (maxvar e + 1)) s 0 = val e (s o Suc)”

4


