
Technische Universität München WS 2022/23
Institut für Informatik 22.11.2022

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:
definition Or :: “bexp ⇒ bexp ⇒ bexp” where

“Or b1 b2 = Not (And (Not b1) (Not b2))”

Prove or disprove (by giving counterexamples) the following program equivalences.
1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c
3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c
4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.
2. Adapt the big step semantics to include rules for the new commands.
3. Prove that c1 OR c2 ∼ c2 OR c1.
4. Prove: (IF b THEN c1 ELSE c2) ∼ ((ASSUME b; c1) OR (ASSUME (Not b);

c2))

Note: It is easiest if you take the existing theories and modify them.

Exercise 5.3 Deskip

Define a recursive function

1



fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:
Hint: Take a look at SkipE and sim_while_cong.
lemma “deskip c ∼ c”

Homework 5.1 Listing intermediate states

Submission until Monday, November 28, 2022, 23:59pm.
For program analysis tools such as debugger, it is often helpful to list all intermediate
states in the execution of a program. Define an inductive predicate ls, such that ls c s ss
t holds iff (c, s) ⇒ t and ss are all the intermediate states (we will refine that predicate
later):
inductive ls :: “com ⇒ state ⇒ state list ⇒ state ⇒ bool”

For a simple setup, we declare introduction and elimination rules (feel free to tune this):
declare ls.intros[intro]
declare ls.cases[elim]
code_pred ls .

Show that your predicate is correct w.r.t to big-step semantics. With the right predicate
and induction setup, both proofs should be nearly automatic (if they are not, don’t
spend your time here - we will refine the predicate).
theorem big_ls: “(c,s) ⇒ t =⇒ ∃ sts. ls c s sts t”
theorem ls_big: “ls c s ss t =⇒ (c,s) ⇒ t”

You might have wondered which intermediate states to record if the state did not change.
Use the existing semantics for single steps (→) to infer which states you need to record
additionally, and add them to your predicate - this should not break your (⇒) proofs.
A few test cases for the intermediate lists:
abbreviation “ss_x c s ≡ {map (λs. s ′′x ′′) ss |ss t . ls c s ss t}”
values “ss_x (IF Bc True THEN ′′x ′′ ::= N 3 ELSE ′′x ′′ ::= N 1) <>” — [0, 3]
values “ss_x (WHILE Less (V ′′x ′′) (N 1) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1)) <>” — [0, 0, 1,
1, 1, 1]

Now, we want to prove that the returned list corresponds exactly to the small steps.
Start by showing that there is a step from s to the head of the list (unless the command
is SKIP):
lemma ls_step: “[[ls c s ss t; c 6= SKIP]] =⇒ (case ss of

2



[] ⇒ (c,s) → (SKIP,t)
| (x#_) ⇒ ∃ c ′. (c,s) → (c ′,x))”

That alone is not enough to show our construction correct, we also need a lemma to
show that this small step preserves the list semantics:
lemma ls_ls: “[[ls c s1 (s2#ss) s3; (c,s1) → (c ′,s2)]] =⇒ ls c ′ s2 ss s3”

Finally, put it all together:
theorem ls_steps: “ls c s1 (ss1@[s2]@ss2) t =⇒ ∃ c ′. (c,s1) →∗ (c ′,s2)”

3


