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Exercise 9.1 Hoare Logic

In this exercise, you shall prove correct some Hoare triples.

Step 1 Write a program that stores the maximum of the values of variables a and b in
variable c.
definition Max :: “com”

Step 2 Prove these lemmas about max:
lemma max_right[simp]: “(a::int)<b =⇒ max a b = b”

lemma max_left[simp]: “¬(a::int)<b =⇒ max a b = a”

Show that Tut.Max satisfies the following Hoare triple:
lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Step 3 Now define a program MUL that returns the product of x and y in variable z.
You may assume that y is not negative.
definition MUL :: “com”

Step 4 Prove that MUL does the right thing.
lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”

Hints:

• You may want to use the lemma algebra_simps, containing some useful lemmas
like distributivity.
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• Note that we use a backward assignment rule. This implies that the best way to
do proofs is also backwards, i.e., on a semicolon c1;; c2, you first continue the proof
for c2, thus instantiating the intermediate assertion, and then do the proof for c1.
However, the first premise of the Seq-rule is about c1. In an Isar proof, this is no
problem. In an apply-style proof, the ordering matters. Hence, you may want to
use the [rotated] attribute:

lemmas Seq_bwd = Seq[rotated]

lemmas hoare_rule[intro?] = Seq_bwd Assign Assign ′ If

Step 5 Note that our specifications still have a problem, as programs are allowed to
overwrite arbitrary variables.
For example, regard the following (wrong) implementation of Tut.Max:
definition “MAX_wrong = ( ′′a ′′::=N 0;; ′′b ′′::=N 0;; ′′c ′′::= N 0)”

Prove that MAX_wrong also satisfies the specification for Tut.Max:
lemma “` {λs. True} MAX_wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is, that Tut.Max computes the maximum of the values
of a and b in the initial state. Moreover, we may require that a and b are not changed.
For this, we can use logical variables in the specification. Prove the following more
accurate specification for Tut.Max:
lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}

Max {λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

The specification for MUL has the same problem. Fix it!

Exercise 9.2 Forward Assignment Rule

Think up and prove correct a forward assignment rule, i.e., a rule of the form ` {P} x
::= a {Q}, where Q is some suitable postcondition. Hint: To prove this rule, use the
completeness property, and prove the rule semantically.

lemmas fwd_Assign ′ = weaken_post[OF fwd_Assign]

Redo the proofs for Tut.Max and MUL from the previous exercise, this time using your
forward assignment rule.
lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

lemma “` {λs. 0 ≤ s ′′y ′′} MUL {λs. s ′′z ′′ = s ′′x ′′ ∗ s ′′y ′′}”
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Homework 9.1 Hoare Logic with Continue, 5 pts

Submission until Monday, Jan 9, 23:59pm.
Consider the extension of IMP with CONTINUE in the template, which uses an explicit
flag to jump over the rest of the loop, to enable a C-style continue.
Your task is to adopt the rules of the Hoare calculus for partial correctness to this
language and to prove the calculus sound and complete. In addition to the previous
predicate for validity |= {P}c{Q}, we will use a notion of validity |={I} {P}c{Q} that
tracks the invariant of the surrounding While-loop, and a corresponding Hoare calculus
`{I} {P} c {Q}:
inductive

hoare :: “assn ⇒ assn ⇒ com ⇒ assn ⇒ bool” (“`{(1_)}/ ({(1_)}/ (_)/ {(1_)})” 50)
where
Skip: “`{I} {P} SKIP {P}” |
Assign: “`{I} {λs. P(s[a/x])} x::=a {P}” |
Seq: “[[ `{I} {P} c1 {Q}; `{I} {Q} c2 {R} ]]

=⇒ `{I} {P} c1;;c2 {R}” |
If : “[[ `{I} {λs. P s ∧ bval b s} c1 {Q}; `{I} {λs. P s ∧ ¬ bval b s} c2 {Q} ]]

=⇒ `{I} {P} IF b THEN c1 ELSE c2 {Q}” |
conseq: “[[ ∀ s. P ′ s −→ P s; `{I} {P} c {Q}; ∀ s. Q s −→ Q ′ s ]]

=⇒ `{I} {P ′} c {Q ′}” |
— Add your cases here

Prove soundness of the calculus:

theorem hoare_sound: “`{I} {P}c{Q} =⇒ |=c{I} {P}c{Q}”

In analogy to |=c{I} {P}c{Q}, define the the weakest precondition wp c I Q of program
c:
definition wp :: “com ⇒ assn ⇒ assn ⇒ assn”

Prove the following theorem, which establishes completeness of the calculus:

lemma hoare_complete: assumes “|= {P}c{Q}”
shows “`{Q} {P}c{Q}”

Finally show that the calculus is sound and complete:
theorem hoare_sound_complete: “`{Q} {P}c{Q} ←→ |= {P}c{Q}”

Hints: Use the theory HOL−IMP.Hoare/HOL−IMP.Hoare_Sound_Complete as a tem-
plate for your proofs. For soundness, you will need a lemma about the state of the
flag after executing a while-loop. For completeness, it may be easier to not attempt to
prove a variant of wp_While_If immediately, but rather to figure out what variants of
wp_While_True and wp_While_False are needed, and then to prove them directly.
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Homework 9.2 Be Original!

Submission until Monday, Jan 9, 23:59pm. Think up a nice topic to formalize yourself!
It can be from any area of mathematics, computer science, etc., but should contain some
interesting proof(s) – mere definitions or implementations are not interesting.
Creativity is encouraged and will be graded, but keep in mind that formalizations can
often be more difficult than anticipated. Set yourself realistic goals! You are also welcome
to discuss your project with us beforehand.
Comment your formalization well such that we can see what it is intended to do.
Incomplete or unfinished formalizations are welcome and will be graded (but clean them
up so it is obvious what is there and what is missing).
The project will run until the end of the winter holiday, and the regular homework load
is strongly reduced during that time.
In total, this exercise will be worth 15 points, plus bonus points for nice submissions.

Merry Christmas!
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