
Technische Universität München WS 2022/23
Institut für Informatik 17.01.2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 11

Exercise 11.1 Complete Lattice over Lists

Show that lists of the same length – ordered point-wise – form a partial order if the
element type is partially ordered. Partial orders are predefined as the type class order.
instantiation list :: (order) order

Define the infimum operation for a set of lists. The first parameter is the length of the
result list.
definition Inf_list :: “nat ⇒ (′a::complete_lattice) list set ⇒ ′a list”

Show that your ordering and the infimum operation indeed form a complete lattice:
interpretation

Complete_Lattice “{xs. length xs = n}” “Inf_list n” for n

Exercise 11.2 Fixed Point Theory

Let ′a be a complete lattice with ordering ≤ and f :: ′a ⇒ ′a be a monotonic function.
Moreover, let x0 be a post-fixpoint of f, i.e., x0 ≤ f x0. Prove:⊔

{f i(x0) | i∈�} ≤
⊔

{f i+1 (x0) | i∈�}

Hint: The least upper bound satisfies the following properties

x∈A =⇒ x ≤
⊔

A (Sup_upper)

(∀ x∈A. x ≤ u) =⇒
⊔

A ≤ u (Sup_least)

unbundle lattice_syntax

lemma
fixes f :: “ ′a::complete_lattice ⇒ ′a”

assumes “x0 ≤ f x0”
shows “

⊔
{(f^^i) x0 |i. i∈�} ≤

⊔
{(f^^(i+1)) x0 | i. i∈�}”

1

Homework 11.1 Collecting Semantics

Submission until Monday, Jan 23, 23:59pm.
Consider the version of IMP with LOOP c UNTIL b construct. The annotations of that
construct can be inferred from the following annotated command:

| x := 1 {A0};
| y := 1 {A1};
| {A2} LOOP
| y := y - 2; {A3}
| x := x + y {A4}
| {A5}
| UNTIL x < 0
| {A6}

Compute the collecting semantics: Show how the annotations change with each applica-
tion of the step function, until you reach a fix-point.
Write down all entries for each column. Use the explicit ________ value where
possible. Write down states as (x,y) tuple.
definition A0 :: “entry list”
definition A1 :: “entry list”
definition A2 :: “entry list”
definition A3 :: “entry list”
definition A4 :: “entry list”
definition A5 :: “entry list”
definition A6 :: “entry list”

Homework 11.2 Kleene fixed point theorem

Submission until Monday, Jan 23, 23:59pm. Prove the Kleene fixed point theorem. We
first introduce some auxiliary definitions:

A chain is a set such that any two elements are comparable. For the purposes of the
Kleene fixed-point theorem, it is sufficient to consider only countable chains. It is easiest
to formalize these as ascending sequences. (We can obtain the corresponding set using
the function range :: (′a ⇒ ′b) ⇒ ′b set.)
chain C = (∀n. C n ≤ C (Suc n))
A function is continuous, if it commutes with least upper bounds of chains:
continuous f = (∀C . chain C −→ f (

⊔
range C) =

⊔
(f ‘ range C))

The following lemma may be handy:
[[continuous f ; chain C]] =⇒ f (

⊔
range C) =

⊔
(f ‘ range C)

As warm-up, show that any continuous function is monotonic:

2

lemma cont_imp_mono:
fixes f :: “ ′a::complete_lattice ⇒ ′b::complete_lattice”

assumes “continuous f”
shows “mono f”

Hint: The relevant lemmas are
thm mono_def monoI monoD

Finally show the Kleene fixed point theorem. Note that this theorem is important, as it
provides a way to compute least fixed points by iteration.
In this proof, you may not use metis, meson, or smt!
theorem kleene_lfp:

fixes f :: “ ′a::complete_lattice ⇒ ′a”
assumes CONT : “continuous f”
shows “lfp f =

⊔
(range (λi. (f^^i) ⊥))”

proof −

We propose a proof structure here, however, you may deviate from this and use your own proof
structure:

let ?C = “λi. (f^^i) ⊥”
note MONO=cont_imp_mono[OF CONT]
have CHAIN : “chain ?C”

show ?thesis
proof (rule antisym)

show “
⊔

(range ?C) ≤ lfp f”

next
show “lfp f ≤ Sup (range ?C)”

qed
qed

Hint: Some relevant lemmas are
thm lfp_unfold lfp_lowerbound Sup_subset_mono range_eqI

3

