
Technische Universität München WS 2022/23
Institut für Informatik 24.01.

Prof. Tobias Nipkow, Ph.D.
Fabian Huch

Semantics of Programming Languages
Exercise Sheet 12

Exercise 12.1 Complete Lattices

Which of the following ordered sets are complete lattices?
• N, the set of natural numbers {0, 1, 2, 3, . . .} with the usual order
• N∪{∞}, the set of natural numbers plus infinity, with the usual order and n < ∞

for all n ∈ N.
• A finite set A with a total order ≤ on it.

Exercise 12.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.
datatype sign = Pos | Zero | Neg | Any

instantiation sign :: order
instantiation sign :: semilattice_sup_top
fun γ_sign :: “sign ⇒ val set”
fun num_sign :: “val ⇒ sign”
fun plus_sign :: “sign ⇒ sign ⇒ sign”
global_interpretation Val_semilattice

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
global_interpretation Abs_Int

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
defines aval_sign = aval ′ and step_sign = step ′ and AI_sign = AI

Some tests:
definition “test1_sign =

′′x ′′ ::= N 1;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)”

value “show_acom (the(AI_sign test1_sign))”

definition “test2_sign =
′′x ′′ ::= N 1;;

1

WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)”

definition “steps c i = ((step_sign >) ^^ i) (bot c)”

value “show_acom (steps test2_sign 0)”

...
value “show_acom (steps test2_sign 6)”
value “show_acom (the(AI_sign test2_sign))”

Exercise 12.3 AI for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure
out, that after executing the program x:=2; IF x<2 THEN x:=2 ELSE x:=1, x will be
constant.
In this exercise, we extend our abstract interpreter with a simple analysis of boolean ex-
pressions. To this end, modify locale Val_semilattice in theory Abs_Int0.thy as follows:

• Introduce an abstract domain ′bv for boolean values, add, analogously to num ′ and
plus ′ also functions for the boolean operations and for less.

• Modify Abs_Int0 to accommodate for your changes.

Homework 12.1 AI Table

Submission until Monday, Jan 30, 23:59pm. Consider the following Imp program (with
extended arithmetic operations):

r := 1;
WHILE b DO (
r := r * 2;
IF b THEN

r := r - 1
ELSE

r := r + 2
)

Run the abstract interpretation on this program, i.e., iterate the step function for parity
analysis until a fixed point is reached. Again, use the format from last homework.
definition A0 :: “entry list”
definition A1 :: “entry list”
definition A2 :: “entry list”
definition A3 :: “entry list”
definition A4 :: “entry list”

2

definition A5 :: “entry list”
definition A6 :: “entry list”
definition A7 :: “entry list”
definition A8 :: “entry list”
definition A9 :: “entry list”
hide_const None Some

Homework 12.2 AI for the Extended Reals

Submission until Monday, Jan 30, 23:59pm. For this exercise, we will consider a mod-
ified variant of IMP that computes on real numbers extended with − ∞ and ∞. The
corresponding type is ereal. We will consider “− ∞ + ∞” and “∞ + (− ∞)” erroneous
computations. We propagate errors by using the option type, i.e. we set val = ereal
option. The theories up to Collecting for this variant are already provided. Your task
is now to design an abstract interpreter on the domain consisting of subsets of {∞−,
∞+, NaN , Real} where NaN signals a computation error and all other values have their
obvious meaning. First adopt Abs_Int0 and Abs_Int1 to accommodate for the changed
semantics, and then instantiate the abstract interpreter with your analysis. For this step
you best modify the parity analysis Abs_Int1_parity.
Hints: To benefit from proof automation it can be helpful to slightly change the for-
mat of the rules for addition in Val_semilattice. For instance, you could reformulate
gamma_plus ′ as: i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i = i1 + i2 =⇒ i ∈ γ(plus ′ a1 a2). (You
will need to change the interface Val_semilattice).

You can start the formalization of the AI like this:

datatype bound = NegInf (“∞−”) | PosInf (“∞+”) | NaN | Real
datatype bounds = S “bound set”

instantiation bounds :: order
begin

definition less_eq_bounds where
“x ≤ y = (case (x, y) of (S x, S y) ⇒ x ⊆ y)”

definition less_bounds where
“x < y = (case (x, y) of (S x, S y) ⇒ x ⊂ y)”

instance
end

For the AI, interpret Abs_Int, Abs_Int_mono, and Abs_Int_measure:
instantiation bounds :: semilattice_sup_top
begin

definition sup_bounds

3

definition top_bounds
instance
end

fun γ_bounds :: “bounds ⇒ val set”
definition num_bounds :: “ereal ⇒ bounds”
fun plus_bounds :: “bounds ⇒ bounds ⇒ bounds”
global_interpretation Val_semilattice
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
global_interpretation Abs_Int
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
defines aval_bounds = aval ′ and step_bounds = step ′ and AI_bounds = AI

global_interpretation Abs_Int_mono
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds

fun m_bounds :: “bounds ⇒ nat”
abbreviation h_bounds :: nat

global_interpretation Abs_Int_measure
where γ = γ_bounds and num ′ = num_bounds and plus ′ = plus_bounds
and m = m_bounds and h = h_bounds

4

