
Technische Universität München WS 23/24
Institut für Informatik 30.10.2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch, Kevin Kappelmann

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be imported as follows:
theory Ex02 imports “HOL−IMP.AExp” “HOL−IMP.BExp” begin

Exercise 2.1 Induction

Define a function deduplicate that removes duplicate occurrences of subsequent elements
from a list.
fun deduplicate :: “ ′a list ⇒ ′a list”

The following should evaluate to True, for instance:
value “deduplicate [1,1,2,3,2,2,1::nat] = [1,2,3,2,1]”

Prove that a deduplicated list has at most the length of the original list:
lemma “length (deduplicate xs) ≤ length xs”

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.
Define a function subst that performs a syntactic substitution, i.e., subst x a ′ a shall be
the expression a where every occurrence of variable x has been replaced by expression
a ′.
fun subst :: “vname ⇒ aexp ⇒ aexp ⇒ aexp”

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.
The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:
lemma subst_lemma: “aval (subst x a ′ a) s = aval a (s(x := aval a ′ s))”

Note: The expression s(x := v) updates a function at point x. It is defined as:

1



f (a := b) = (λx. if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:
lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation x++, as
known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick ( ′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′ ⇒ state ⇒
val×state, i.e., it takes an expression and a state, and returns a value and a new state.
Define the function aval ′.

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx. 0

value “<>(x := 0)”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:
lemma aval ′_inc:

“aval ′ a <> = (v, s ′) =⇒ 0 ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split: if_splits prod.splits).

2



Homework 2.1 Tail-Recursive Counting

Submission until Monday, November 6, 23:59pm.

Define a tail-recursive counting function (which counts the number of occurrences of a
particular element in a list), using an auxiliary argument:
fun count_tr :: “ ′a list ⇒ ′a ⇒ nat ⇒ nat”

Tail-recursive means that the recursive call must be the outermost function call, i.e.,
the recursive call must be of form count_tr (x # xs) y n = count_tr A B C for some
(non-recursive) terms A, B, and C.

Then you need to prove that count_tr is correct w.r.t. to the count function defined in
Exercise 1.1:

lemma tailrec_count: “count_tr xs y 0 = count xs y”

Hint: In order to prove the above lemma, you may first need to prove a more general fact
about count_tr (employing an arbitrary argument n instead of 0), of which the above
lemma is a particular case.

Homework 2.2 Let expressions

Submission until Monday, November 6, 23:59pm.

We extend the aexp datatype by adding a construct for let-expressions:
datatype aexp ′ = N ′ int | V ′ (char list) | Plus ′ aexp ′ aexp ′ | Let ′ (char list) aexp ′ aexp ′

An expression Let x e a binds the expression e to variable x in a:
aval ′ (Let ′ x a b) s = aval ′ b (s(x := aval ′ a s))

Define a function that transforms such an expression into an equivalent one that does
not contain Let. Prove that your transformation is correct. Hint: Re-use the imported
tutorial material!
fun inline :: “aexp ′ ⇒ aexp”
value “inline (Let ′ ′′x ′′ (Plus ′ (N ′ 1) (N ′ 1)) (Plus ′ (V ′ ′′x ′′) (V ′ ′′x ′′))) =

Plus (Plus (N 1) (N 1)) (Plus (N 1) (N 1))”

theorem aval_inline: “aval (inline e) s = aval ′ e s”

Define a function that eliminates occurrences of Let ′ x e1 e2 that are never used, i.e.,
where x does not occur free in e2. An occurrence of a variable in an expression is called
free if it is not in the body of a Let expression that binds the same variable. For example,
the variable x occurs free in Plus ′ (V ′ x) (V ′ x), but not in Let ′ x (N ′ 0) (Plus ′ (V ′ x)
(V ′ x)). Do not eliminate any other Lets! Prove the correctness of your transformation.

3



fun elim :: “aexp ′ ⇒ aexp ′”

Some examples:
value “elim (Let ′ ′′x ′′ (N ′ 1) (N ′ 0)) = N ′ 0”
value “elim (Let ′ ′′x ′′ (N ′ 1) (Let ′ ′′x ′′ (N ′ 2) (V ′ ′′x ′′))) = Let ′ ′′x ′′ (N ′ 2) (V ′ ′′x ′′)”

theorem aval ′_elim: “aval ′ (elim e) s = aval ′ e s”

Hints:

• Define an auxiliary function for elim
• When you feel that the proof should be trivial to finish, you can also try the

sledgehammer command. It invokes an extensive proof search that includes
more library lemmas.

4


