Semantics of Programming Languages

Exercise Sheet 3

Exercise 3.1 Reflexive Transitive Closure

A binary relation is expressed by a predicate of type $R::^{\prime} s \Rightarrow$'s bool.
Intuitively, $R s t$ represents a single step from state s to state t.
The reflexive, transitive closure R^{*} of R is the relation that contains a step $R^{*} s t$, iff R can step from s to t in any number of steps (including zero steps).
Formalize the reflexive transitive closure as an inductive predicate:
inductive star ::"(' $a \Rightarrow^{\prime} a \Rightarrow$ bool $) \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool" for r
When doing so, you have the choice to append or prepend a step. In any case, the following two lemmas should hold for your definition:

```
lemma star_prepend:"\llbracketr x y; star r y z\rrbracket\Longrightarrow star r x z"
lemma star_append: "\llbracket star r x y; ry z\rrbracket\Longrightarrow star r x z"
```

Now, formalize the star predicate again, this time the other way round (append if you prepended the step before or vice versa):
inductive star ${ }^{\prime}::$ " $\left(' a \Rightarrow{ }^{\prime} a \Rightarrow\right.$ bool $) \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool" for r
Prove the equivalence of your two formalizations:
lemma"star r $x y=\operatorname{star}^{\prime} r x y$ "

Exercise 3.2 Avoiding Stack Underflow

A stack underflow occurs when executing an instruction on a stack containing too few values - e.g., executing an $A D D$ instruction on an stack of size less than two. A wellformed sequence of instructions (e.g., one generated by comp) should never cause a stack underflow.

In this exercise, you will define a semantics for the stack-machine that throws an exception if the program underflows the stack.

Modify the exec1 and exec - functions, such that they return an option value, None indicating a stack-underflow.
fun exec 1 :: "instr \Rightarrow state \Rightarrow stack \Rightarrow stack option"
fun exec :: "instr list \Rightarrow state \Rightarrow stack \Rightarrow stack option"
Now adjust the proof of theorem exec_comp to show that programs output by the compiler never underflow the stack:
theorem exec_comp: "exec (comp a) s stk = Some (aval as \# stk)"

Exercise 3.3 A Structured Proof on Relations

We consider two binary relations T and A and assume that T is total, A is antisymmetric and T is finer than A, i.e., $T x y$ implies $A x y$ for all x, y. Show with a structured, Isar-style proof that then A finer than T (without proof methods more powerful than simp!):

```
lemma
    assumes total: " x y.Txy\veeTyx"
        and anti: * x y. A x y ^A y x \longrightarrow x = y"
        and subset: " }xy.Txy\longrightarrowAxy
    shows "A xy\longrightarrowT x y"
```


Homework 3.1 Compiling bexps

Submission until Monday, November 13, 23:59pm.
Consider a stack machine with additional binary operations as instructions:
datatype instr $=L O A D I$ int $\mid L O A D$ (char list) $|b A D D| b S U B|b M A X| b M I N$
The implementation of their execution is straightforward by extending the known exec1 function, e.g.:
exec1 bMAX ux $(j \# i \# s t k)=\max i j \# s t k$
This machine admits compilation of aexps exactly like in the lecture (the compilation function is called acomp). Your job now is it to define compilation of bexps. Since the machine computes on integers, the result should be 1 if the expression evaluates to True and 0 otherwise.
fun bcomp :: "bexp \Rightarrow instr list"
Show that you construction is correct!
theorem exec_bcomp: "exec (bcomp b) s stk $=($ if bval bsthen 1 else 0$) \#$ stk"

Homework 3.2 Regular Expressions

Submission until Monday, November 13, 23:59pm.
In this exercise, we take a nostalgic trip back to your Introduction to the Theory of Computation class (also known as THEO at TUM).

A word is a list of characters over some alphabet, which we keep polymorphic.
type_synonym 'a word $=$ "' a list"
A language is a set of words.
type_synonym 'a lang $=$ "' a word set"
Here are some basic operations on languages, namely concatenation and exponentiation: concat $L M \equiv\{v @ w \mid v w . v \in L \wedge w \in M\}$ pow $L 0=\{[]\}$

```
pow L (Suc n) = concat L (pow L n)
```

The following two lemmas are useful for automation. Theorems with the attribute intro are automatically applied as backward rules.

```
lemma empty_mem_pow_zero [simp, intro]:"[] \in pow L 0"
    by (auto simp: concat_def)
lemma append_mem_pow_SucI [intro]:
    "v\inL\Longrightarroww\in pow L n\Longrightarrow(v@w)\in pow L (Suc n)"
    by (auto simp: concat_def)
```

We next consider a simplified form of regular expressions.

```
datatype 'a rexp = Atom 'a | Concat ('a rexp) ('a rexp)|Or ('a rexp) ('a rexp)| Star
```

('a rexp)

Define a recursive function that computes the language of a regular expression.
fun lang ::"'a rexp \Rightarrow 'a lang"
Hint: use the functions concat and pow. For the Star case, use one of the following:
lang $($ Star $r)=(\bigcup n, \ldots)$
lang $($ Star $r)=\{w, \ldots\}$
Define a recursive function that pulls Ors outward whenever a Concat meets an Or, i.e. replace terms such as $(a \mid b) c$ by $a b \mid b c$. For simplicity, you should ignore new clashes of Ors and Concats created by your function (you will run into termination troubles otherwise). For example, $((a \mid b) c) d$ should be transformed to $(a b \mid b c) d$, not $a b d \mid b c d$, and $((a \mid b) \mid c) d$ should be transformed to $(a d \mid b d) \mid c d$.
fun or_outward :: "'a rexp \Rightarrow 'a rexp"
Example:
value "or_outward (Star (Concat (Concat (Or (Atom " $a^{\prime \prime}$) (Atom " $\left.{ }^{\prime \prime}{ }^{\prime \prime}\right)$) (Atom " $\left.c^{\prime \prime}\right)$) (Atom $\left.\left.{ }^{\prime \prime} d^{\prime \prime}\right)\right)$) $=$
Star (Concat (Or (Concat (Atom $\left.{ }^{\prime \prime} a^{\prime \prime}\right)\left(\right.$ Atom $\left.\left.{ }^{\prime \prime} c^{\prime \prime}\right)\right)\left(\right.$ Concat $\left(\right.$ Atom $\left.{ }^{\prime \prime} b^{\prime \prime}\right)\left(\right.$ Atom $\left.\left.\left.^{\prime \prime} c^{\prime \prime}\right)\right)\right)($ Atom " $\left.d^{\prime \prime}\right)$)"

Show that your transformation doesn't change the language!
lemma lang_or_outward_eq_lang: "lang (or_outward r) = lang r "
Next, define an inductive predicate that decides whether a word is in the language of a regular expression without using lang:
inductive in_lang :: "' a rexp \Rightarrow 'a word \Rightarrow bool"
Prove that lang and in_lang coincide by proving the following lemmas. Hint: you do not need to invent any additional lemmas.

```
lemma mem_lang_if_in_lang:"in_lang r w\Longrightarroww\inlang r"
lemma in_lang_Star_if_mem_powI:
    "(\bigwedgew.w\in langr }\Longrightarrow\mathrm{ in_lang r w) }
    w}\in\mathrm{ pow (lang r) n > in_lang (Starr) w"
```

Hint: use in_lang_Star_if_mem_powI for the following proof:
lemma in_lang_if_mem_lang: " $w \in$ lang $r \Longrightarrow$ in_lang $r w$ "
corollary in_lang_iff_mem_lang:"in_lang $r w \longleftrightarrow w \in l a n g r "$

