
Technische Universität München WS 23/24
Institut für Informatik 28.11.2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch, Kevin Kappelmann

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler ccomp2 which reduces the number of instructions
for programs of the form IF b THEN c. Try to finish ccomp2 without looking up
ccomp!

3. Extend the proof of comp_bigstep to your modified compiler.

value “ccomp (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

fun ccomp2 :: “com ⇒ instr list” where
“ccomp2 SKIP = []” |
“ccomp2 (x ::= a) = acomp a @ [STORE x]” |
“ccomp2 (c1;;c2) = ccomp2 c1 @ ccomp2 c2” |
“ccomp2 (WHILE b DO c) =
(let cc = ccomp2 c; cb = bcomp b False (size cc + 1)
in cb @ cc @ [JMP (−(size cb + size cc + 1))])”

value “ccomp2 (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

lemma ccomp_bigstep:
“(c,s) ⇒ t =⇒ ccomp2 c ` (0,s,stk) →∗ (size(ccomp2 c),t,stk)”

Exercise 6.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.
When doing this, all expressions will have a type – hence you can define taval/tbval as
functions.

1



1. In the theory HOL−IMP.Types (copy it first), re-write the inductive definitions
of taval/tbval as functions, and mody atyping/btyping such that implicit coercions
are applied where necessary.

2. Adapt all proofs in the theory HOL−IMP.Types accordingly.

Hint: Isabelle already provides the coercion function real_of_int (int ⇒ real).

Homework 6.1 Compiling the ol’ SWITCHeroo

Submission until Monday, December 4, 23:59pm.

Adapt the compiler for the switch construct from the last homework, and prove it correct!
The machine instructions are slightly changed: instead of JMPLESS/JMPGE, we now
have JMPEQ/JMPNE.
Hint: Take some inspiration from the approach for the original IMP!

fun ccomp :: “com ⇒ instr list”

lemma ccomp_bigstep:
“(c,s) ⇒ t =⇒ ccomp c ` (0,s,stk) →∗ (size(ccomp c),t,stk)”

Homework 6 Type Inference

Submission until Monday, December 4, 23:59pm.
Types are wonderful. But it is tedious to write them down all the time. In this exercise,
we will hence specify and prove correct a type inference scheme. Unlike type checking
schemes, which take a program, a type environment, and a type as input, (c.f. atyping,
ctyping), type inference schemes take a program and a partial type environment as input
and return an updated (partial) type environment. The type inference’s goal is to extend
the partial type environment to suit the given program.
For this purpose, we extend the co-domain of type environments by an unknown, de-
noting that we do not yet know the type of a variable. If the type inference encounters
a program part that determines the type of an unknown, it should update the type
environment accordingly. If the type inference encounters a program part that does not
match the already determined type, it should fail.
type_synonym ptyenv = “vname ⇒ ty option”

For simplicity, we want a one-pass type inference, that is we want to visit each part
of the program only once. Unfortunately, this causes a problem: Consider the possible
types for the expression (x+y)+(x+2.3). Clearly, we have that both x and y must be
reals. However, when type inference is done in a depth-first-search fashion, it will see
x+y first and infer x and y to be undetermined. Only later, once it sees the second term

2



x+2.3, it has to somehow go back and set y to be real as well, even though y does not
occur in the second term.
To avoid this problem, we require that all variables that we see in expressions already
have a determined type and let type inference fail otherwise. In practice, this means that
input variables of the program still need to be explicitly typed, but all other variables
will be inferred.
First extend the type checking rules for arithmetic and boolean expressions to partial
type environments. Due to the reasons just explained, the check should only succeed if
the types of all variables occurring in the expression are determined.
inductive check_aexp :: “ptyenv ⇒ aexp ⇒ ty ⇒ bool”
inductive check_bexp :: “ptyenv ⇒ bexp ⇒ bool”

To check whether our specifications are correct, we want to compare them to atyping
and btyping, respectively. For this purpose, we need to explain how a partial type
environment might be extended to a type environment.
A type environment is an instance of an partial type environment if the two match on
all variables with determined types:
is_inst Γ pΓ ≡ ∀ x T . pΓ x = Some T −→ Γ x = T

Now show that your specifications are correct:
lemma atyping_if_check_aexp:

assumes “check_aexp pΓ a T”
and “is_inst Γ pΓ”

shows “atyping Γ a T”

lemma check_aexp_if_atyping:
assumes “atyping Γ a T”

shows “check_aexp (λx. Some (Γ x)) a T”

lemma btyping_if_check_bexp:
assumes “check_bexp pΓ b”

and “is_inst Γ pΓ”
shows “btyping Γ b”

lemma check_bexp_if_btyping:
assumes “btyping Γ b”

shows “check_bexp (λx. Some (Γ x)) b”

Next, write an inductive predicate that extends a partial typing according to a command.
For an assignment, the type of the assigned variable is determined to have the type of
the right hand side expression. If the assigned variable is already determined to have a
different type, no typing for the program should be inferred.
For an if-statement, the inferred types for the then and else branches must be combined.
A combination is not possible if a variable is determined to have two different types
in the branches. In that case, no typing for the program should be inferred. Use the
predicate combines_to to express this constraint in your definition:

3



inductive infer_com :: “ptyenv ⇒ com ⇒ ptyenv ⇒ bool”

As a test, show that your type inference works for the following program:
test_c ≡ ′′x ′′ ::= Ic 0;; IF Less (V ′′x ′′) (Ic 2) THEN SKIP ELSE ′′y ′′ ::= Rc (10 /
10);; ′′y ′′ ::= Plus (V ′′y ′′) (Rc (31 / 10))
lemma type_test_c:

“∃ pΓ. infer_com (λ_. None) test_c pΓ ∧ ctyping (λx. case (pΓ x) of Some T ⇒ T | _ ⇒
Ity) test_c”

As sketched below, a safe way to prove such a lemma is to apply the introduction rules manually.
Of course, you may also try to automate this proof. Note that you may have to adjust the
applied introduction rules for your solution.

unfolding test_c_def
apply (rule exI )
apply (rule conjI )
apply (rule infer_com.intros)
apply (rule infer_com.intros)
apply (rule infer_com.intros)
apply (rule check_aexp.intros)
apply (rule refl)

and so on ...

Prove that your inference is monotone with respect to its input and output environments:
lemma is_inst_if_is_inst_if_infer :

assumes “infer_com pΓ c pΓ ′”
and “is_inst Γ pΓ ′”

shows “is_inst Γ pΓ”

Finally, prove soundness of your type inference.
It may be advantageous to prove some auxiliary lemmas about is_inst and combines_to
rather then proving these things in the main proof.
lemma ctyping_if_infer_com:

assumes “infer_com pΓ c pΓ ′”
and “is_inst Γ pΓ ′”

shows “ctyping Γ c”

4


