
Technische Universität München WS 23/24
Institut für Informatik 5.12.2023

Prof. Tobias Nipkow, Ph.D.
Fabian Huch, Kevin Kappelmann

Semantics of Programming Languages
Exercise Sheet 7

There are strikes on Dec 5 for fair inflation-adjusted wages as well as tariff
contracts for student employees, starting at 9:30 at the bakery on the campus
Garching – so no tutorial session!

Exercise 7.1 Security type system: bottom-up with subsumption

Recall security type systems for information flow control from the lecture. Such a type
system can either be defined in a top-down or in a bottom-up manner. Independently
of this choice, the type system may or may not contain a subsumption rule (also called
anti-monotonicity in the lecture). The lecture discussed already all but one combination:
a bottom-up type system with subsumption.

• Define a bottom-up security type system for information flow control with sub-
sumption rule (see below, add the subsumption rule).

• Prove the equivalence of the newly introduced bottom-up type system with the
bottom-up type system without subsumption rule from the lecture.

inductive sec_type2 ′ :: “com ⇒ level ⇒ bool” (“(` ′′ _ : _)” [0,0] 50) where
Skip2 ′: “` ′ SKIP : l” |
Assign2 ′: “sec x ≥ sec a =⇒ ` ′ x ::= a : sec x” |
Seq2 ′: “[[` ′ c1 : l; ` ′ c2 : l]] =⇒ ` ′ c1 ;; c2 : l” |
If2 ′: “[[sec b ≤ l; ` ′ c1 : l; ` ′ c2 : l]] =⇒ ` ′ IF b THEN c1 ELSE c2 : l” |
While2 ′: “[[sec b ≤ l; ` ′ c : l]] =⇒ ` ′ WHILE b DO c : l”

lemma “` c : l =⇒ ` ′ c : l”

lemma “` ′ c : l =⇒ ∃ l ′ ≥ l. ` c : l ′”

Homework 7 Security Types

Submission until Monday, December 11, 23:59pm.

Prove the equivalence of the bottom-up system (` _ : _) and the top-down system
(_ ` _) without subsumption rule. Carry out a direct correspondence proof in both
directions without using the ` ′ system. Give an Isar proof - no apply allowed!
theorem bottom_up_impl_top_down: “` c : l =⇒ l ` c”
theorem top_down_impl_bottom_up: “l ` c =⇒ ∃ l ′ ≥ l. ` c : l ′”

1

Homework 7.1 Definite Initialization Analysis

Submission until Monday, Dec 11, 23:59pm.
In the lecture, you have seen a definite initialization analysis that was based on the
big-step semantics. Definite initialization analysis can also be based on a small-step
semantics. For this, the ternary predicate D from the lecture can be split into two parts:
a function AV :: com ⇒ vname set, which collects the names of all variables assigned
by a command, and a relation D :: vname set ⇒ com ⇒ bool, which checks whether a
command accesses only previously assigned variables. Conceptually, the ternary predi-
cate from the lecture (call it Dlec) and the two-step approach should be related by the
equivalence D V c ←→ Dlec V c (V ∪ AV c)
Define the functions Av and D, where the latter checks whether a command accesses only
assigned variables assuming that the variables in the argument set are already assigned).
fun AV :: “com ⇒ vname set”
fun D :: “vname set ⇒ com ⇒ bool”

The following two proofs are already given as they are quite similar to Dlec. If the proof
doesn’t work, check your definitions (and adapt the proof, if necessary)! You may not
define any auxiliary lemma (due to the constraints of the next part).

Now we want to prove preservation of D with respect to the small-step semantics, and
from progress and preservation conclude soundness of D. You may need the lemmas
D_incr and D_mono for this.
Proofs like this can often seem magical when using the full proof automation of Isabelle,
which makes them very hard to read. Hence, your proofs for this exercise must not
contain any of the advanced solvers like fastforce, smt, auto, etc. This means that only
the following proof methods may be used:

• cases/induction
• rule/intro/erule/drule/frule
• ./..
• simp/simp_all
• blast

Of course all of the Isar syntax (fix, obtain, ...), forward proofs, instantiation, local
lemmas, etc. are still allowed. Give the proofs in Isar. No applys are allowed!
Note: The submission system will not check these constraints but the graders will.
lemma D_mono: “A ⊆ A ′ =⇒ D A c =⇒ D A ′ c”

theorem D_preservation: “(c,s) → (c ′,s ′) =⇒ D (dom s) c =⇒ D (dom s ′) c ′”

theorem D_sound: “(c,s) →∗ (c ′,s ′) =⇒ c ′ 6= SKIP =⇒ D (dom s) c =⇒ ∃ cs ′′. (c ′,s ′) → cs ′′”

2

