
Technische Universität München WS 23/24
Institut für Informatik 30.01.2024

Prof. Tobias Nipkow, Ph.D.
Fabian Huch, Kevin Kappelmann

Semantics of Programming Languages
Exercise Sheet 13

Exercise 13.1 Complete Lattices

Which of the following ordered sets are complete lattices?
• N, the set of natural numbers {0, 1, 2, 3, . . .} with the usual order
• N∪{∞}, the set of natural numbers plus infinity, with the usual order and n < ∞

for all n ∈ N.
• A finite set A with a total order ≤ on it.

Exercise 13.2 Sign Analysis

Instantiate the abstract interpretation framework to a sign analysis over the lattice
pos, zero, neg, any, where pos abstracts positive values, zero abstracts zero, neg ab-
stracts negative values, and any abstracts any value.
datatype sign = Pos | Zero | Neg | Any

instantiation sign :: order
instantiation sign :: semilattice_sup_top
fun γ_sign :: “sign ⇒ val set”
fun num_sign :: “val ⇒ sign”
fun plus_sign :: “sign ⇒ sign ⇒ sign”
global_interpretation Val_semilattice

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
global_interpretation Abs_Int

where γ = γ_sign and num ′ = num_sign and plus ′ = plus_sign
defines aval_sign = aval ′ and step_sign = step ′ and AI_sign = AI

Some tests:
definition “test1_sign =

′′x ′′ ::= N 1;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)”

value “show_acom (the(AI_sign test1_sign))”

definition “test2_sign =
′′x ′′ ::= N 1;;

1

WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)”

definition “steps c i = ((step_sign >) ^^ i) (bot c)”

value “show_acom (steps test2_sign 0)”

...
value “show_acom (steps test2_sign 6)”
value “show_acom (the(AI_sign test2_sign))”

Exercise 13.3 AI for Conditionals

Our current constant analysis does not regard conditionals. For example, it cannot figure
out, that after executing the program x:=2; IF x<2 THEN x:=2 ELSE x:=1, x will be
constant.
In this exercise, we extend our abstract interpreter with a simple analysis of boolean ex-
pressions. To this end, modify locale Val_semilattice in theory Abs_Int0.thy as follows:

• Introduce an abstract domain ′bv for boolean values, add, analogously to num ′ and
plus ′ also functions for the boolean operations and for less.

• Modify Abs_Int0 to accommodate for your changes.

Homework 13.1 Bits analysis

Submission until Monday, Feb 5, 23:59pm.
An interesting analysis for abstract interpretation is whether a program could have an
arithmetic overflow. For this analysis, we consider the abstract domain of a bounded
number of bits. Additionally, we store the sign information. We also have cases for zero
and any (though 0 is also contained in Pos and Neg):
datatype bits = Zero | Pos nat | Neg nat | Either nat | Any
The constructors Pos, Neg, and Either take a natural number b and represent all corre-
sponding numbers whose binary representation needs at most b+1 bits:
γ_bits Any = UNIV
γ_bits Zero = {0}
γ_bits (Pos b) = {i. 0 ≤ i ∧ |i| < 2Suc b}
γ_bits (Neg b) = {i. i ≤ 0 ∧ |i| < 2Suc b}
γ_bits (Either b) = {i. |i| < 2Suc b}
Instantiate the order and semilattice_sup_top classes such that they are suitable for
abstract interpretation. Be as precise as possible!
instantiation bits :: order
instantiation bits :: semilattice_sup_top

2

Next, define the abstraction function. It must be executable.
Hint:

• do not use log2 (since that works over reals), instead define your own function.

fun num_bits :: “val ⇒ bits”

Some tests:
value “num_bits 0 = Zero”
value “num_bits 3 = Pos 1”
value “num_bits (−42) = Neg 5”

Next, we want to instantiate the abstract interpreter. As the analysis depends on the
exact size of the machine words, we introduce a locale with a single parameter bits for
the number of bits, and use the sublocale command instead of global_interpretation.
Background: Sublocale makes our locale extend the abstract interpretation locales. In
particular, any concept defined in the abstract interpretation locales will be available in
our locale as well. Once we instantiate bounded_bits for a concrete number of bits, we
can use the abstract interpreter.
locale bounded_bits = fixes bits :: nat
begin

Define the abstract plus operation (be as precise as possible) and complete the instance
proofs. While there is no explicit assumption, in your construction you may assume that
all input values of the bits type are bounded by the bits variable. Your output must also
be bounded.
Hint:

• The number of subgoals that arise in this construction can be quite large. But if
you do things right, they should mostly be easy, so you can solve even hundreds
of subgoals with a single auto call (which may take a few seconds to complete).

fun plus_bits :: “bits ⇒ bits ⇒ bits”
sublocale Val_semilattice

where γ = γ_bits and num ′ = num_bits and plus ′ = plus_bits
sublocale Abs_Int

where γ = γ_bits and num ′ = num_bits and plus ′ = plus_bits
sublocale Abs_Int_mono

where γ = γ_bits and num ′ = num_bits and plus ′ = plus_bits
end

Finally, an example for 4-bit machine words (try your own!):
global_interpretation bounded_bits

where bits=“Suc (Suc (Suc 0))”
defines AI_bits4 = AI and step_bits4 = step ′ and aval ′_bits4 = aval ′
done

3

definition “steps c i = (step_bits4 > ^^ i) (Abs_Int0.bot c)”

definition “test1_bits =
′′y ′′ ::= N 7 ;;
′′z ′′ ::= Plus (V ′′y ′′) (N 2);;
′′y ′′ ::= Plus (V ′′x ′′) (N 0)”

value “show_acom (steps test1_bits 0)”
value “show_acom (steps test1_bits 1)”
value “show_acom (steps test1_bits 2)”
value “show_acom (steps test1_bits 3)”

value “show_acom (the (AI_bits4 test1_bits))”

4

