
Final Exam
Semantics of Programming Languages

15. 2. 2023

First name:

Last name:

Student-Id (Matrikelnummer):

Signature:

1. The exam is to be solved in Isabelle on your own Laptop.

2. Submit your solutions to do.proof.in.tum.de, in the Semantics Exam 2022/2023
contest. You may submit any number of times, only your last submission will be
counted.

3. You may use all lecture material (including exercises and your homework) to solve
the exam.

4. Using the internet is not allowed for any other reason than submitting your solution
to the submission system.

5. You have 120 minutes to solve the exam and submit your solutions.

6. Please put your student ID and ID-card or driver’s license on the table until we have
checked it.

7. You may not leave the room in the last 15 minutes of the exam — you may disturb
other students who need this time.

1

https://do.proof.in.tum.de

Proof Guidelines: We expect valid Isabelle proofs. sledgehammer may be used. The
use of sorry may lead to the deduction of points but is preferable to spending a lot of
time on individual proof steps. Unfinished proofs should be well written and easy to
understand!

2

1 Induction

Consider the following recursive function count and inductive predicate ok:
fun count :: ”bool list ⇒ int” where
”count [] = 0” |
”count (True # bs) = count bs + 1” |
”count (False # bs) = count bs − 1”

inductive ok :: ”bool list ⇒ bool” where
”ok []” |
”[[ok as; ok bs]] =⇒ ok (True # as @ False # bs)”

Prove the following lemma:
lemma ok_count_Zero: ”ok bs =⇒ count bs = 0”

3

2 Bounds on Small-Step Execution

Regard commands without WHILE. Define a function
fun bound :: ”com ⇒ nat”

such that

(c, s) → (c ′, s ′) =⇒ bound c ′ < bound c

Prove this property!
Note: Intuitively, bound computes an upper bound on the number of small steps required
to completely execute the command.

4

3 Hoare Logic

Consider an extension of IMP with a CHANGE x ST b command, which finds a value
for the variable x such that b holds, i.e., its big-step semantics is:
bval b (s(x := n)) =⇒ (CHANGE x ST b, s) ⇒ s(x := n).
Define a backwards rule for our Hoare calculus. Define it in the following abbreviation:
abbreviation (input) change_rule :: ”vname ⇒ bexp ⇒ assn ⇒ assn”

such that the new rule is:
”` {change_rule x b P} CHANGE x ST b {P}” |

Show your new rule sound and complete:
lemma sound: ”|= {change_rule x b P} CHANGE x ST b {P}”
lemma complete: ”|= {P} (CHANGE x ST b) {Q} =⇒ ` {P} CHANGE x ST b {Q}”

Define an IMP command MINUS for an unary minus operation without using a loop,
and show it correct:

lemma MINUS_correct:
”` {λs. s=s0} MINUS {λs. s ′′y ′′ = − s ′′x ′′ ∧ (∀ v 6= ′′y ′′. s v = s0 v)}”

The CHANGE x ST b command is hard to compute on a real machine. Assume we have
a SWAP x y command instead, which swaps the values of the variables x and y. The
following program SIM_CHG simulates the change command:

x := 0;
WHILE not b DO (

SWAP x y;
IF b THEN SKIP
ELSE (

SWAP x y;
x := x + 1;
y := y - 1

)
);
y := x + y

Find an invariant to prove the following specification for partial correctness (i.e., the
arising verification conditions should be easily provable). No proof required!
lemma

assumes ”y /∈ vars b”
shows ”` {λs. s=s0 ∧ s x < s y} SIM_CHG x b y {λs. bval b s ∧ (∀ v. v 6= x −→ s v = s0

v)}”

5

4 Abstract Proof

Let f :: nat ⇒ A such that f is increasing (∀n. n ≤ f n) and A = {m. ∃n. m = f n}
has a maximal element. Then f has a fixed point. Prove the following formalization of
this fact:
lemma fixp:

fixes f :: ”nat ⇒ nat”
assumes incr : ”∀n. n ≤ f n”
assumes A: ”A = {m. ∃n. m = f n}”
assumes max: ”∃m ∈ A. ∀n ∈ A. n ≤ m”
shows ”∃ k∈A. f k = k”

The proof must be structured into small steps. That is, every proof step (have etc) must
use at most one of the four assumptions and at most two propositions you proved in
previous steps. No apply.

6

5 Inverse Analysis

An interesting analysis for abstract interpretation is whether a program could have an
arithmetic overflow. For this analysis, we consider the abstract domain of a bounded
number of bits:
datatype bits = B nat | Any

A value of B n represents all numbers whose binary representation needs at most n
bits (only positive numbers, assuming a version of IMP with nats instead of int). The
number 0 needs at least one bit to be represented. As usual, Any represents any number.
Define ≤ and t on this domain, for any n:
fun less_eq_bits :: ”bits ⇒ bits ⇒ bool” (infix ”≤” 50)
fun sup_bits :: ”bits ⇒ bits ⇒ bits” (infix ”t” 50)

Is this a complete lattice?

Next, define an abstract plus operation for a given bound:
fun plus ′_bits :: ”nat ⇒ bits ⇒ bits ⇒ bits”

Run the abstract interpreter on the following program, with n=1, as seen in the exercises:
Document its state at every step for the variable x, until a fixed point is reached. Write
down a list of steps for each annotation, using _________ when a value did not
change w.r.t. the previous iteration.

x := 1;
WHILE b DO (

x := x+1;
)

Define the inverse analysis. Always return the smallest abstract values possible. Start
as follows:
fun inv_plus ′_bits :: ”bits ⇒ bits ⇒ bits ⇒ (bits ∗ bits)” where

”inv_plus ′_bits _ (B 0) _ = (B 0, B 0)” |
”inv_plus ′_bits _ _ (B 0) = (B 0, B 0)”

fun inv_less ′_bits :: ”bool ⇒ bits ⇒ bits ⇒ (bits ∗ bits)” where
”inv_less ′_bits _ (B 0) _ = (B 0, B 0)” |
”inv_less ′_bits _ _ (B 0) = (B 0, B 0)”

7

	Induction
	Bounds on Small-Step Execution
	Hoare Logic
	Abstract Proof
	Inverse Analysis

