
Technische Universität München WS 24/25
Institut für Informatik 24.10.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 2

This exercise sheet depends on definitions from the files AExp.thy and BExp.thy, which
may be imported as follows:
theory Ex02 imports “HOL−IMP.AExp” “HOL−IMP.BExp” begin

Exercise 2.1 Induction

Define a function deduplicate that removes duplicate occurrences of subsequent elements
from a list.
fun deduplicate :: “ ′a list ⇒ ′a list”

The following should evaluate to True, for instance:
value “deduplicate [1,1,2,3,2,2,1::nat] = [1,2,3,2,1]”

Prove that a deduplicated list has at most the length of the original list:
lemma “length (deduplicate xs) ≤ length xs”

Exercise 2.2 Substitution Lemma

A syntactic substitution replaces a variable by an expression.
Define a function subst that performs a syntactic substitution, i.e., subst x a ′ a shall be
the expression a where every occurrence of variable x has been replaced by expression
a ′.
fun subst :: “vname ⇒ aexp ⇒ aexp ⇒ aexp”

Instead of syntactically replacing a variable x by an expression a ′, we can also change
the state s by replacing the value of x by the value of a ′ under s. This is called semantic
substitution.
The substitution lemma states that semantic and syntactic substitution are compatible.
Prove the substitution lemma:
lemma subst_lemma: “aval (subst x a ′ a) s = aval a (s(x := aval a ′ s))”

Note: The expression s(x := v) updates a function at point x. It is defined as:

1

f (a := b) = (λx. if x = a then b else f x)

Compositionality means that one can replace equal expressions by equal expressions.
Use the substitution lemma to prove compositionality of arithmetic expressions:
lemma comp: “aval a1 s = aval a2 s =⇒ aval (subst x a1 a) s = aval (subst x a2 a) s”

Exercise 2.3 Arithmetic Expressions With Side-Effects

We want to extend arithmetic expressions by the postfix increment operation x++, as
known from Java or C++.

The increment can only be applied to variables. The problem is, that it changes the
state, and the evaluation of the rest of the term depends on the changed state. We
assume left to right evaluation order here.

Define the datatype of extended arithmetic expressions. Hint: If you do not want to hide
the standard constructor names from IMP, add a tick (′) to them, e.g., V ′ x.

The semantics of extended arithmetic expressions has the type aval ′ :: aexp ′⇒ state ⇒
val×state, i.e., it takes an expression and a state, and returns a value and a new state.
Define the function aval ′.

Test your function for some terms. Is the output as expected? Note: <> is an abbrevi-
ation for the state that assigns every variable to zero:

<> ≡ λx. 0

value “<>(x := 0)”
value “aval ′ (Plus ′ (PI ′ ′′x ′′) (V ′ ′′x ′′)) <>”
value “aval ′ (Plus ′ (Plus ′ (PI ′ ′′x ′′) (PI ′ ′′x ′′)) (PI ′ ′′x ′′)) <>”

Is the plus-operation still commutative? Prove or disprove!

Show that the valuation of a variable cannot decrease during evaluation of an expression:
lemma aval ′_inc:

“aval ′ a <> = (v, s ′) =⇒ 0 ≤ s ′ x”

Hint: If auto on its own leaves you with an if in the assumptions or with a case-statement,
you should modify it like this: (auto split: if_splits prod.splits).

2

Homework 2.1 Models for Boolean Formulas

Submission until Wednesday, October 30, 23:59pm.
Consider the following datatype modeling Boolean formulas:
datatype bexp ′ = V (char list) | And bexp ′ bexp ′ | Not bexp ′ | TT | FF

Define a function sat that decides whether a given assignment (represented as vname ⇒
bool) satisfies a formula:
fun sat :: “bexp ′⇒ assignment ⇒ bool”

Define a function models that computes the set of satisfying assignments for a given
Boolean formula:
fun models :: “bexp ′⇒ assignment set” where

“models (V x) = {σ. σ x}”
| “models TT = UNIV”

Here UNIV = {x. True}. Fill in the remaining cases! Hint: You can use the set operators
−, ∩, ∪ for complement/difference, intersection, and union of sets.

Finally prove that a formula is a satisfying assignment for a formula ϕ iff it is contained
in models ϕ:
theorem sat_iff_model: “sat ϕ σ ←→ σ ∈ models ϕ”

Homework 2.2 Simplifying Boolean Formulas

Submission until Wednesday, October 30, 23:59pm.
In this exercise, we want to simplify the Boolean formulas defined in the previous exercise
by removing the constants FF and TT from them where possible. We will say that a
formula is simplified if does not contain a constant or if it is FF or TT itself:
simplified ϕ = (ϕ = TT ∨ ϕ = FF ∨ ¬ has_const ϕ)

where
has_const TT = True
has_const FF = True
has_const (Not a) = has_const a
has_const (And a b) = (has_const a ∨ has_const b)
has_const (V v) = False

Define a function that simplifies Boolean formulas.
fun simplify :: “bexp ′⇒ bexp ′”

3

Example:
value “simplify (And (Not FF) (V ′′x ′′)) = V ′′x ′′”

Prove that it produces only simplified formulas.

theorem simplify_simplified: “simplified (simplify ϕ)”

Even more importantly, you need to prove that simplify does not alter the semantics of
the formula:

theorem simplify_models: “models (simplify ϕ) = models ϕ”

Hints: Define non-recursive auxiliary functions to perform the actual simplification! You
will need auxiliary lemmas about them.
Note that you can use the induction scheme of a non-recursive fun – it will not have an
inductive case but still be a case distinction for the function patterns.
Also keep in mind to unfold a definition only when needed. Otherwise it will complicate
your proofs.

4

