
Technische Universität München WS 24/25
Institut für Informatik 7.11.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 4

From this sheet onward, you should write all your (non-trivial) proofs in Isar!

Exercise 4.1 Rule Inversion

Recall the evenness predicate ev from the lecture:
inductive ev :: “nat ⇒ bool” where

ev0: “ev 0” |
evSS : “ev n =⇒ ev (Suc (Suc n))”

Prove the converse of rule evSS using rule inversion. Hint: There are two ways to proceed.
First, you can write a structured Isar-style proof using the cases method:
lemma “ev (Suc (Suc n)) =⇒ ev n”
proof −

assume “ev (Suc (Suc n))” then show “ev n”
proof (cases)

...

qed
qed

Alternatively, you can write a more automated proof by using the inductive_cases
command to generate elimination rules. These rules can then be used with “auto elim:”.
(If given the [elim] attribute, auto will use them by default.)
inductive_cases evSS_elim: “ev (Suc (Suc n))”

Next, prove that the natural number three (Suc (Suc (Suc 0))) is not even. Hint: You
may proceed either with a structured proof, or with an automatic one. An automatic
proof may require additional elimination rules from inductive_cases.
lemma “¬ ev (Suc (Suc (Suc 0)))”

1

Exercise 4.2 (Deterministic) Labelled Transition Systems (LTS)

A labelled transition system is a directed graph with labelled edges. We model such
systems as functions:
type_synonym (′q, ′l) lts = “ ′q ⇒ ′l ⇒ ′q ⇒ bool”

For an LTS δ over nodes of type ′q and labels of type ′l, δ p l q means that there is an
edge from p to q labelled with l.

A word from source node u to target node v is the list of edge labels one encounters
when going from u to v.
Define an inductive predicate word, such that word δ u w v holds iff w is a word from u
to v.
inductive word :: “(′q, ′l) lts ⇒ ′q ⇒ ′l list ⇒ ′q ⇒ bool” for δ

A deterministic LTS has at most one transition for each node and label
definition “det δ ≡ ∀ p l q1 q2. δ p l q1 ∧ δ p l q2 −→ q1 = q2”

Show that for a deterministic LTS, the same word from the same source node leads to
at most one target node.
lemma

assumes det: “det δ”
shows “word δ p ls q =⇒ word δ p ls q ′ =⇒ q = q ′”

Exercise 4.3 Counting Elements

Recall the count function, that counts how often a specified element occurs in a list:
fun count :: “ ′a ⇒ ′a list ⇒ nat” where

“count x [] = 0”
| “count x (y # ys) = (if x=y then Suc (count x ys) else count x ys)”

Show that, if an element occurs in the list (its count is positive), the list can be split
into a prefix not containing the element, the element itself, and a suffix containing the
element one times less
lemma

assumes “count a xs = Suc n”
shows “∃ ps ss. xs = ps @ a # ss ∧ count a ps = 0 ∧ count a ss = n”

Homework 4.1 Product Construction for LTS

Submission until Wednesday, November 13, 23:59pm.
The product construction is a standard construction for the intersection of two lts. Define
the transition relation prod of the product of two given transition systems.
inductive prod :: “(′q1,

′l) lts ⇒ (′q2,
′l) lts ⇒ ′q1× ′q2 ⇒ ′l ⇒ ′q1× ′q2 ⇒ bool” for δ1 δ2

2

Show that your product only contains those words.
Hint: Make sure to set up the induction properly. When you explicitly state the argu-
ments in a computation or rule induction, it might be necessary to then declare some of
the variables in the arguments as arbitrary.
Also make sure to chain in the proper facts into your induction with using

theorem prod_sound:
assumes “word (prod δ1 δ2) (p1,p2) ls (q1,q2)”

shows “word δ1 p1 ls q1 ∧ word δ2 p2 ls q2”

Now prove that your product accepts all words that occur in both lts.
Hint: You will need rule induction and rule inversion.
lemma prod_complete:

assumes “word δ1 p1 ls q1”
and “word δ2 p2 ls q2”

shows “word (prod δ1 δ2) (p1,p2) ls (q1,q2)”

Finally, the single correctness statement follows:
corollary “{w. word (prod δ1 δ2) (p1,p2) w (q1,q2)} = {w. word δ1 p1 w q1} ∩ {w. word δ2 p2

w q2}”
using prod_sound prod_complete by fast

Homework 4.2 Minimal Compiler

Submission until Wednesday, November 13, 23:59pm.
Recall the aexp compiler with exceptions from the last tutorial.
We defined correctness of the compiled code as follows:
correct a ins ≡ ∀ s stk. exec ins s stk = Some (aval a s # stk)
We are also interested in optimal code. Show that any correct list of instructions needs
to contain a LOAD instruction for every variable of an aexp.
Hint: Do a proof by contradiction, without induction. You will need auxiliary lemmas
about aval and exec with changed state (those need induction).

theorem vars_in_ins:
assumes “x ∈ vars a”

shows “correct a ins =⇒ LOAD x ∈ set ins”

3

