
Technische Universität München WS 24/25
Institut für Informatik 14.11.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Let Or be the disjunction of two bexps:
definition Or :: “bexp ⇒ bexp ⇒ bexp” where

“Or b1 b2 = Not (And (Not b1) (Not b2))”

Prove or disprove (by giving counterexamples) the following program equivalences.
1. IF And b1 b2 THEN c1 ELSE c2 ∼ IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
2. WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c
3. WHILE And b1 b2 DO c ∼ WHILE b1 DO c;; WHILE And b1 b2 DO c
4. WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We will define nondeter-
ministic choice (c1 OR c2), that decides nondeterministically to execute c1 or c2; and
assumption (ASSUME b), that behaves like SKIP if b evaluates to true, and returns no
result otherwise.

1. Modify the datatype com to include the new commands OR and ASSUME.
2. Adapt the big step semantics to include rules for the new commands.
3. Prove that c1 OR c2 ∼ c2 OR c1.
4. Prove: (IF b THEN c1 ELSE c2) ∼ ((ASSUME b; c1) OR (ASSUME (Not b);

c2))

Note: It is easiest if you take the existing theories and modify them.

Exercise 5.3 Deskip

Define a recursive function

1

fun deskip :: “com ⇒ com”

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP;; WHILE b DO (x ::= a;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:
Hint: Take a look at SkipE and sim_while_cong.
lemma “deskip c ∼ c”

Homework 5.1 Control Flow Graphs

Submission until Wednesday, November 20, 23:59pm.
In this homework, we want to study the concept of control flow graphs for IMP and
connect it to the small-step semantics.
A control flow graph is a labeled transition system, where the edges are labeled with
effects. An effect is a partial function on states, returning None when the test for a
Boolean condition fails:
type_synonym effect = “state ⇒ state option”
type_synonym ′q cfg = “(′q,effect) lts”

Intuitively, the control flow graph is executed by following a path and applying the effects
of the actions to the state. Lift effects to paths. Only paths where all tests succeed shall
yield a result 6= None.
fun eff_list :: “effect list ⇒ state ⇒ state option”

The control flow graph of a WHILE-Program can be defined over nodes that are com-
mands. Complete the following definition. (Hint: Have a look at the small-step semantics
first)
inductive cfg :: “com cfg” where

cfg_assign: “cfg (x ::= a) (λs. Some (s(x:=aval a s))) (SKIP)”
| cfg_Seq2: “cfg c1 e c1 ′ =⇒ cfg (c1;;c2) e (c1 ′;;c2)”

We want to show that the effects of paths in the CFG match the small-step semantics.
Prove the theorem for a single step first:
theorem eq_step: “(c,s) → (c ′,s ′) ←→ (∃ e. cfg c e c ′ ∧ e s = Some s ′)”

Now prove the main theorem:
theorem eq_path: “(c,s) →∗ (c ′,s ′) ←→ (∃π. word cfg c π c ′ ∧ eff_list π s = Some s ′)”

2

Homework 5.2 Resource management

Submission until Wednesday, November 20, 23:59pm.
Frequently, programs need to allocate resources and clean them up afterwards, even in
case of exceptions. Extend IMP with such constructs:

• THROW indicates that there is an error
• ATTEMPT c1 CLEANUP c2 executes c1 until and exception is thrown and always

executes c2.
The detailed semantics of these constructs are as follows.
Command THROW throws an exception. The only command that can catch
an exception is ATTEMPT c1 CLEANUP c2: if an exception is thrown by c1,
execution stops there and continues with c2. If no exception is thrown, c2 is
also executed. An exception being thrown during c2 aborts execution of c2 and
propagates “upwards” to the next ATTEMPT block.
Similarly to the small-step semantics, the big-step semantics is now of type com
× state ⇒ com × state. In a big step (c,s) ⇒ (x,t), x is THROW if an exception
has been thrown, otherwise it is SKIP.
Copy existing types and definitions from Big_Step and adapt them.

Step 1 Define the modified big-step semantics.
inductive big_step :: “com × state ⇒ com × state ⇒ bool” (infix “⇒” 55)

Step 2 Adapt the previous auxiliary setup from the BigStep theory, including rule
inversion.

We will also need the introduction & induction rules:
lemmas big_step_induct = big_step.induct[split_format(complete)]
declare big_step.intros[intro]

Step 3 Prove that (⇒) always produces SKIP or THROW.
lemma big_step_result: “(c,s) ⇒ (c ′,s ′) =⇒ (c ′ = SKIP ∨ c ′ = THROW)”

Step 4 The small-step semantics can also be adjusted. It has the same type as before,
but instead of having only SKIP as the final command, we can also have THROW.
Exceptions propagate upwards until an enclosing ATTEMPT is found, that is, until a
configuration (ATTEMPT THROW CLEANUP c, s) is reached.
Define the modified small-step semantics and prove that it is complete wrt to the big-step
semantics.
inductive small_step :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→” 55)

3

abbreviation small_steps :: “com ∗ state ⇒ com ∗ state ⇒ bool” (infix “→∗” 55)
where “x →∗ y == star small_step x y”

declare small_step.intros[simp,intro]

You may need some lemmas from the existing theories. In addition, you might need a
new lemma about x →∗ y and ATTEMPT.

lemma big_to_small: “cs ⇒ xt =⇒ cs →∗ xt”

4

