
Technische Universität München WS 24/25
Institut für Informatik 21.11.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 6

Exercise 6.1 Compiler optimization

A common programming idiom is IF b THEN c, i.e., the else-branch consists of a single
SKIP command.

1. Look at how the program IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP
is compiled by ccomp and identify a possible compiler optimization.

2. Implement an optimized compiler ccomp2 which reduces the number of instructions
for programs of the form IF b THEN c. Try to finish ccomp2 without looking up
ccomp!

3. Extend the proof of comp_bigstep to your modified compiler.

value “ccomp (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

fun ccomp2 :: “com ⇒ instr list” where
“ccomp2 SKIP = []” |
“ccomp2 (x ::= a) = acomp a @ [STORE x]” |
“ccomp2 (c1;;c2) = ccomp2 c1 @ ccomp2 c2” |
“ccomp2 (WHILE b DO c) =
(let cc = ccomp2 c; cb = bcomp b False (size cc + 1)
in cb @ cc @ [JMP (−(size cb + size cc + 1))])”

value “ccomp2 (IF Less (V ′′x ′′) (N 5) THEN ′′y ′′ ::= N 3 ELSE SKIP)”

lemma ccomp_bigstep:
“(c,s) ⇒ t =⇒ ccomp2 c ` (0,s,stk) →∗ (size(ccomp2 c),t,stk)”

Exercise 6.2 Type coercions

Adding and comparing integers and reals can be allowed by introducing implicit conver-
sions: Adding an integer and a real results in a real value, comparing an integer and a
real can be done by first converting the integer into a real. Implicit conversions like this
are called coercions.
When doing this, all expressions will have a type – hence you can define taval/tbval as
functions.

1

1. In the theory HOL−IMP.Types (copy it first), re-write the inductive definitions
of taval/tbval as functions, and mody atyping/btyping such that implicit coercions
are applied where necessary.

2. Adapt all proofs in the theory HOL−IMP.Types accordingly.

Hint: Isabelle already provides the coercion function real_of_int (int ⇒ real).

Homework 6.1 Compilation of exceptions

Submission until Wednesday, November 27, 23:59pm.

In the previous homework, we extended IMP with the exception throwing and handling
constructs THROW and ATTEMPT _ CLEANUP _. In this homework you have to
extend the command compiler ccomp to deal with these two constructs. The main idea
is simple: a THROW is compiled to a JMP to the CLEANUP code. The new ccomp
should have type nat ⇒ com ⇒ instr list. The additional nat parameter has a similar
purpose as the nat parameter of function bcomp: it tells ccomp how far beyond the end
of the generated code the code should jump in case of a THROW. If execution of the
source code terminates with SKIP, execution of the compiled code should terminate 1
step beyond end of the compiled code; if execution of the source code terminates with
THROW, execution of the compiled code should jump n+1 steps beyond the end of
compiled code.
Define the adapted compiler:
fun ccomp :: “nat ⇒ com ⇒ instr list”

Now adapt the correctness statement by replacing a with an appropriate term (without
introducing a new constant) and prove it correct.
lemma ccomp_bigstep:

“(c,s) ⇒ (c ′,t) =⇒ ccomp n c ` (0,s,stk) →∗ (size(ccomp n c) + a,t,stk)”

Homework 6.2 Left and Right Movers

Submission until Wednesday, November 27, 23:59pm.

A semaphore is a counter which can be incremented and decremented by parallel pro-
cesses, however, decrement has to wait until the counter is greater 0. This ensures that
the counter is never negative.
Semaphores can be used to synchronize the access of processes to resources.
We model the possible operations (increment, decrement, unrelated) on semaphores as
follows:
datatype action = Up (char list) | Down (char list) | Other

2

Define the effect of an action on a state. Here, the state holds the values of the
semaphores. Assume that other actions do not modify the state.
inductive exec :: “action ⇒ state ⇒ state ⇒ bool”

Next, we want to develop a scheduler for two processes. The actions of the processes are
modeled as lists.
We use a small-step approach, i.e., we define a configuration that contains the remaining
actions of the two processes and the current semaphore state:
type_synonym config = “action list × action list × state”

Then, you have to define a relation step such that step c l c ′ means that in the configu-
ration c one action is scheduled, and the resulting configuration is c′. The label l labels
an action a and indicates on which process (1 or 2) a acts on:
datatype label = P1 action | P2 action
inductive step :: “config ⇒ label ⇒ config ⇒ bool”

A well-known result on semaphores is that down-operations are right-movers and up-
operations are left movers.
Show that down-operations are right-movers, i.e. a down operation on one process can
be exchanged with a subsequent operation on the other process. Intuitively, this moves
the down-operation to the right in the interleaving sequence.
With the right automation, this proof can be made very automatic and solved by a one-
liner. However, the aim of this homework is to understand better how the automation
works. Thus, do a step-by-step proof:

• solve every goal with a single by with a single method (no , or ;)
• do not use proof methods more powerful than auto (i.e., isar proof patterns and

single-step methods are allowed but fastforce, blast, ... are not.)
• use at most a single simp, intro, or elim modifier per method
• do not declare simp, intro, or elim rules to be used automatically

Hint: You might want to state a similar lemma about exec first. Note that there
are methods to perform a single intro or elim step (similar to rule).

lemma step_shift:
assumes “step c1 (P1 (Down x)) c2”

and “step c2 (P2 a) c3”
shows “∃ ch. step c1 (P2 a) ch ∧ step ch (P1 (Down x)) c3”

Homework 6.3 Locking Order

Submission until Wednesday, November 27, 23:59pm. 6 bonus points, hard - use au-
tomation again! (Bonus points count towards your score but not the maximum.)

3

Another well-known result is that a locking-order implies deadlock freedom: Assume
that there is an ordering on locks, such that a process may only acquire locks which
are greater than all locks it has already acquired. Moreover, assume that a process
eventually releases all acquired locks. Then, there are no deadlocks.
Note that locks can be simulated by semaphores initialized to 1.
We define well-formed action sequences as follows:
well_formed_aux A (Down x # l) = (well_formed_aux (insert x A) l ∧ (∀ y∈A. y <
x))
well_formed_aux A (Up x # l) = (well_formed_aux (A − {x}) l ∧ x ∈ A)

well_formed_aux A (Other # l) = well_formed_aux A l
well_formed_aux A [] = (A = {})
well_formed ≡ well_formed_aux {}

Note that the additional parameter A captures the locks that the process has already
acquired. For simplicity, we use the lexicographic ordering on semaphore names as lock
ordering, from HOL−Library.List_Lexorder and HOL−Library.Char_ord.

Moreover, we define the initial state, a final state, a deadlocked state, and a step without
an explicit label:
init ≡ λ_. 1
fun final where “final ([],[],_) ←→ True” | “final _ ←→ False”
definition “deadlocked c ≡ ¬final c ∧ (∀ c ′ a. ¬step c a c ′)”
abbreviation “step ′ c c ′ ≡ ∃ a. step c a c ′”

Your task is to prove that schedules of well-formed action sequences cannot deadlock:

theorem deadlock_freedom:
assumes WF1: “well_formed l1”

and WF2: “well_formed l2”
and STEPS : “star step ′ (l1,l2,init) c ′”

shows “¬deadlocked c ′”

Here are some hints on one possible way of proving this: Try to find a suitable invariant
on configurations, i.e., a predicate that holds for the initial configuration, and is preserved
by a step. Having established such a predicate, you can easily prove that it holds for
any reachable configuration:
[[star R c0 c ′; I c0;

∧
c c ′. [[I c; R c c ′]] =⇒ I c ′]] =⇒ I c ′

The invariant should contain enough information about the configuration and the ac-
quired locks to get through the following (informal) argument:
If a state is stuck, there are two cases: 1) Both processes want to acquire locks (wlog
a and b) which are not free. Due to locking order, the locks are held by the respective
other process. Again, due to locking order, this implies a > b and a < b, which is a
contradiction.

4

2) Another possibility for stuck states is that one process is already finished. However,
well-formedness ensures that a finished process has released all its locks.

5

