
Technische Universität München WS 24/25
Institut für Informatik 19.12.2024

Prof. Tobias Nipkow, Ph.D.
Kevin Kappelmann, Lukas Stevens

Semantics of Programming Languages
Exercise Sheet 10

Exercise 10.1 Hoare Logic

In this exercise, we will prove the correctness of some concrete programs using Hoare
logic.
First, write a program that stores the maximum of the values of variables a and b in
variable c.
definition Max :: “com”

Show that Max satisfies the following Hoare triple:
lemma “` {λs. True} Max {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

Unfortunately, our specifications has a problem. For example, consider the following
(wrong) implementation of Max:
definition “Max_wrong = (′′a ′′::=N 0;; ′′b ′′::=N 0;; ′′c ′′::= N 0)”

Prove that Max_wrong also satisfies the specification for Max:
lemma “` {λs. True} Max_wrong {λs. s ′′c ′′ = max (s ′′a ′′) (s ′′b ′′)}”

What we really want to specify is that Max computes the maximum of the values of a
and b in the initial state. Moreover, we may require that a and b are not changed.
For this, we can use logical variables in the specification. Prove the following more
accurate specification for Max:
lemma “` {λs. a=s ′′a ′′ ∧ b=s ′′b ′′}

Max {λs. s ′′c ′′ = max a b ∧ a = s ′′a ′′ ∧ b = s ′′b ′′}”

Now consider the following program Mul that returns the product of x and y in variable
z, assuming that y is not negative.
definition Mul :: “com” where

“Mul ≡
′′z ′′::=N 0;;

1

′′c ′′::=N 0;;
WHILE (Less (V ′′c ′′) (V ′′y ′′)) DO (

′′z ′′::=Plus (V ′′z ′′) (V ′′x ′′);;
′′c ′′::=Plus (V ′′c ′′) (N 1))”

Prove that Mul does the right thing using the VCG on an annotated program.
Hint: You may want to use the lemmas algebra_simps, containing some useful lemmas
like distributivity.
unbundle ACOM

definition Mul_annot :: “state ⇒ acom” where
lemma Mul_annot_strip: “strip (Mul_annot s0) = Mul”

Homework 10.1 Extended Euclidean Algorithm

Submission until Wednesday, Jan 8, 23:59pm.
The following program (from the English Wikipedia on extended euclidean algorithm)
computes the greatest common divisor of two numbers a and b, as well as some coeffi-
cients s and t such that gcd a b = a ∗ s + b ∗ t.
Prove it (partially) correct using the VCG for an extension of IMP containing some
more arithmetic primitives. You can find the VCG in the definitions, following the same
naming conventions as in the lecture.
Hint: Read the Wikipedia article first to understand the algorithm if you have not
encountered it before.

''old_r'' ::= V ''a'';;
''r'' ::= V ''b'';;

''old_s'' ::= N 1;;
''s'' ::= N 0;;

''old_t'' ::= N 0;;
''t'' ::= N 1;;

WHILE neq (V ''r'') (N 0) DO (
''quotient'' ::= Div (V ''old_r'') (V ''r'');;

''tmp'' ::= V ''old_r'';;
''old_r'' ::= V ''r'';;
''r'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''r''));;

''tmp'' ::= V ''old_s'';;
''old_s'' ::= V ''s'';;

2

''s'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''s''));;

''tmp'' ::= V ''old_t'';;
''old_t'' ::= V ''t'';;
''t'' ::= Minus (V ''tmp'') (Mul (V ''quotient'') (V ''t''))

)

unbundle ACOM

definition AEGGT_annot :: “state ⇒ acom” where
lemma AEGGT_annot_strip: “strip (AEGGT_annot s0) = EGGT”
theorem EGGT_correct: “`
{λs. s = s0 ∧ s0 ′′a ′′ > 0 ∧ s0 ′′b ′′ > 0}
EGGT
{λs. s ′′old_r ′′ = gcd (s0 ′′a ′′) (s0 ′′b ′′)
∧ gcd (s0 ′′a ′′) (s0 ′′b ′′) = s0 ′′a ′′ ∗ s ′′old_s ′′ + s0 ′′b ′′ ∗ s ′′old_t ′′ }”

Homework 10.2 Formalization of Formal Language Theory/Be Creative

Submission until Wednesday, Jan 8, 23:59pm.
Continue your project from sheet 9.

Merry Christmas!

3

